fractal surface
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 23)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Jiang Zhao ◽  
zekun wang ◽  
Zhengminqing Li ◽  
Rupeng Zhu

Abstract A machined surface has observable fractal characteristics, with infinite local and overall self-similar consistency. Therefore, the fractal theory is considered to provide a better description of the morphological characteristics of rough surfaces, which accurately reflects the randomness and multi-scale characteristics of rough surfaces and it is not comparable with the surface characteristics obtained based on statistical parameters limited by sampling length and device resolution. In this study, the Weierstrass-Mandelbrot (W-M) function was applied to construct a fractal reconstruction surface, and the mixed elastohydrodynamic lubrication model was used to investigate the lubrication characteristics of real and reconstructed surfaces under the same fractal parameters. The effects of the fractal parameters on the fractal surface lubrication characteristics were further analyzed. The results demonstrate that the lateral roughness fractal surface provides greater resistance to the entrained flow of lubricant, which leads to a larger average film thickness, than the longitudinal roughness and isotropic fractal surface. With the increase in fractal dimension, the surface roughness peak density increases, which reduces the surface film thickness by 47%, and the friction coefficient increases by 46%. The lubrication parameter fluctuates slightly with the change in the number of overlapping ridges M of the fractal surface. Generally, M has little effect on the surface lubrication characteristics.


Fractals ◽  
2021 ◽  
Author(s):  
Yunfei Peng ◽  
Zhihang Ma ◽  
Xiao Wang ◽  
Junru Li ◽  
Xinlin Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2095 (1) ◽  
pp. 012098
Author(s):  
Xin Li ◽  
Bingbing Wang

Abstract An adhesive wear model based on a complete contact model for a fractal surface is presented in this work. A contact model which contains effect of adhesion is firstly presented based on ME model. A complete contact model is then proposed. Finally, an adhesive wear model based on this model is given. The results suggest that the maximum contact area increases firstly and then decreases as fractal dimension increases. The percentage of plastic contact area increases with increase of the fractal dimension. And the experimental results for wear volume have shown a good consistency with the results calculated by the wear model.


2021 ◽  
Vol 158 ◽  
pp. 104219
Author(s):  
Zhifang Zhao ◽  
Hongzheng Han ◽  
Pengfei Wang ◽  
Hui Ma ◽  
Shunhao Zhang ◽  
...  

2021 ◽  
Author(s):  
Ju Hyoung Lee ◽  
Notarnicola Claudia ◽  
Jeff Walker

<p>To estimate surface soil moisture from Sentinel-1 backscattering, accurate estimation of soil roughness is a key. However, it is usually error source, due to complexity of surface heterogeneity. This study investigates the fractal methods that takes multi-scale roughness into account. Fractal models are widely recognized as one of the best approaches to depict soil roughness of natural system. Unlike the conventional approach of fractal method that uses local roughness measured in the field or Digital Elevation Model information seldom considering a stochastic characteristic of soil surface, fractal surface is generated with the roughness spatially inverted from Synthetic Aperture Radar (SAR) backscatter. Assuming that the land surface in study site is on small to intermediate scales, pseudo-roughness is spatially estimated by modelling SAR roughness with the one-sided power-law spectrum. In addition, it is assumed that both multiple and single scales of roughness affect SAR backscatter in an integrative way. For validation, soil moisture is retrieved with this time-varying roughness. Based upon local validation and cost minimization, as compared with an inversion approach of surface scattering models (Integral Equation Model), a fractal method seems geometrically more sensible than an inversion, based upon a spatial distribution and a priori knowledge in the field. Although inverted roughness is used as an input, fractal model does not reproduce the same roughness. Results will show local point validation, fractal surface, and estimation of coefficients, and various spatial distribution data. This study will be useful for future satellite missions such as NASA-ISRO SAR mission.</p>


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 171
Author(s):  
Michael González-Durruthy ◽  
Riccardo Concu ◽  
Juan M. Ruso ◽  
M. Natália D. S. Cordeiro

Single-walled carbon nanotubes can induce mitochondrial F0F1-ATPase nanotoxicity through inhibition. To completely characterize the mechanistic effect triggering the toxicity, we have developed a new approach based on the combination of experimental and computational study, since the use of only one or few techniques may not fully describe the phenomena. To this end, the in vitro inhibition responses in submitochondrial particles (SMP) was combined with docking, elastic network models, fractal surface analysis, and Nano-QSTR models. In vitro studies suggest that inhibition responses in SMP of F0F1-ATPase enzyme were strongly dependent on the concentration assay (from 3 to 5 µg/mL) for both pristine and COOH single-walled carbon nanotubes types (SWCNT). Besides, both SWCNTs show an interaction inhibition pattern mimicking the oligomycin A (the specific mitochondria F0F1-ATPase inhibitor blocking the c-ring F0 subunit). Performed docking studies denote the best crystallography binding pose obtained for the docking complexes based on the free energy of binding (FEB) fit well with the in vitro evidence from the thermodynamics point of view, following an affinity order such as: FEB (oligomycin A/F0-ATPase complex) = −9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) = −6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = −5.9 kcal/mol, with predominance of van der Waals hydrophobic nano-interactions with key F0-ATPase binding site residues (Phe 55 and Phe 64). Elastic network models and fractal surface analysis were performed to study conformational perturbations induced by SWCNT. Our results suggest that interaction may be triggering abnormal allosteric responses and signals propagation in the inter-residue network, which could affect the substrate recognition ligand geometrical specificity of the F0F1-ATPase enzyme in order (SWCNT-pristine > SWCNT-COOH). In addition, Nano-QSTR models have been developed to predict toxicity induced by both SWCNTs, using results of in vitro and docking studies. Results show that this method may be used for the fast prediction of the nanotoxicity induced by SWCNT, avoiding time- and money-consuming techniques. Overall, the obtained results may open new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms, rational drug design-based nanotechnology, and potential biomedical application in precision nanomedicine.


Author(s):  
Wujiu Pan ◽  
Changxuan Song ◽  
Liangyu Ling ◽  
Haoyong Qu ◽  
Minghai Wang

Author(s):  
T. A. Tikhomirova ◽  
G. T. Fedorenko ◽  
K. M Nazarenko ◽  
E. S. Nazarenko

A method to create a differentiable complex shapes from simple polygonal models is proposed. It is shown that classical schemes of “smooth” subdivision can be obtained from local self-similarity ratios if “deflection arrows” are scaled as s2, where s is the linear compression coefficient calculated for a flat regular grid of the same structure. The surfaces obtained by a smooth subdivision do not contain sharp features other than the vertices and edges of the original model, so in order to create a surface of more exotic shape one must use more complex model. The article describes an alternative approach, in which a fractal forecast of the position of embedded vertices, calculated using the local geometric self-similarity ratio, is used to obtain a pronounced surface shape. Fractal forecast transfers the properties of the original polygonal model to a smaller scale, thereby generating secondary sharp surface features that compose a large-scale texture. To ensure the differentiability of the surface, the fractal forecast is combined with the “smooth” one, and the proportion of the latter increases with decreasing scale.


Sign in / Sign up

Export Citation Format

Share Document