Modeling the low frequency domain dielectric response of oil-paper insulation

Author(s):  
Dongyang Wang ◽  
Lijun Zhou ◽  
Xuejiao Chen ◽  
Lujia Wang
2010 ◽  
Vol 17 (3) ◽  
pp. 799-807 ◽  
Author(s):  
I. Fofana ◽  
H. Hemmatjou ◽  
F. Meghnefi ◽  
M. Farzaneh ◽  
A. Setayeshmehr ◽  
...  

2019 ◽  
Vol 13 (5) ◽  
pp. 700-707 ◽  
Author(s):  
Mingze Zhang ◽  
Ji Liu ◽  
Haifeng Jia ◽  
Qingguo Chen ◽  
Jialu Lv ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ji Liu ◽  
Daning Zhang ◽  
Xinlao Wei ◽  
Hamid Reza Karimi

A transformation algorithm of dielectric response from time domain to frequency domain is presented. In order to shorten measuring time of low or ultralow frequency dielectric response characteristics, the transformation algorithm is used in this paper to transform the time domain relaxation current to frequency domain current for calculating the low frequency dielectric dissipation factor. In addition, it is shown from comparing the calculation results with actual test data that there is a coincidence for both results over a wide range of low frequencies. Meanwhile, the time domain test data of depolarization currents in dry and moist pressboards are converted into frequency domain results on the basis of the transformation. The frequency domain curves of complex capacitance and dielectric dissipation factor at the low frequency range are obtained. Test results of polarization and depolarization current (PDC) in pressboards are also given at the different voltage and polarization time. It is demonstrated from the experimental results that polarization and depolarization current are affected significantly by moisture contents of the test pressboards, and the transformation algorithm is effective in ultralow frequency of 10−3 Hz. Data analysis and interpretation of the test results conclude that analysis of time-frequency domain dielectric response can be used for assessing insulation system in power transformer.


Author(s):  
Baoling Guo ◽  
Seddik Bacha ◽  
Mazen Alamir ◽  
Julien Pouget

AbstractAn extended state observer (ESO)-based loop filter is designed for the phase-locked loop (PLL) involved in a disturbed grid-connected converter (GcC). This ESO-based design enhances the performances and robustness of the PLL, and, therefore, improves control performances of the disturbed GcCs. Besides, the ESO-based LF can be applied to PLLs with extra filters for abnormal grid conditions. The unbalanced grid is particularly taken into account for the performance analysis. A tuning approach based on the well-designed PI controller is discussed, which results in a fair comparison with conventional PI-type PLLs. The frequency domain properties are quantitatively analysed with respect to the control stability and the noises rejection. The frequency domain analysis and simulation results suggest that the performances of the generated ESO-based controllers are comparable to those of the PI control at low frequency, while have better ability to attenuate high-frequency measurement noises. The phase margin decreases slightly, but remains acceptable. Finally, experimental tests are conducted with a hybrid power hardware-in-the-loop benchmark, in which balanced/unbalanced cases are both explored. The obtained results prove the effectiveness of ESO-based PLLs when applied to the disturbed GcC.


Sign in / Sign up

Export Citation Format

Share Document