Study and Practice on Control Strategy of Leader-Follower Manned-Unmanned Aerial Vehicle Formation Based on PIXHAWK Flight Control System

Author(s):  
Wang Yue ◽  
Wang Pei ◽  
Liu Feng ◽  
Xiong Wei ◽  
Guo Run-Tang ◽  
...  
Author(s):  
Nur Ezzyana Ameera Mazlan ◽  
◽  
Syariful Syafiq Shamsudin ◽  
Mohammad Fahmi Pairan ◽  
Mohd Fauzi Yaakub ◽  
...  

This research focuses on developing an automatic flight control system for a fixed-wing unmanned aerial vehicle (UAV) using a software-in-the-loop method in which the PID controller is implemented in National Instruments LabVIEW software and the flight dynamics of the fixed-wing UAV are simulated using the X-Plane flight simulator. The fixed-wing UAV model is created using the Plane Maker software and is based on existing geometry and propulsion data from the literature. Gain tuning for the PID controller is accomplished using the pole placement technique. In this approach, the controller gain can be calculated using the dynamic parameters in the transfer function model and the desired characteristic equation. The proposed controller designs' performance is validated using attitude, altitude, and velocity hold simulations. The results demonstrate that the technique can be an effective tool for researchers to validate their UAV control algorithms by utilising the realistic UAV or manned aircraft models available in the X-Plane flight simulator.


Aviation ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 79-85
Author(s):  
Mirosław Adamski

The article is an independent work containing the author’s ingenious research methodology and the model of the control system of Unmanned Aerial Vehicles. Furthermore a unique and world first mathematical model of an Unmanned Aerial Vehicle was developed, as well as a simulation program which enabled to investigate the control system of any Unmanned Aerial Vehicles in the tilt duct pitch (altitude), bank (direction), deviation and velocity, depending upon the variable values of the steering coefficient, reinforcement coefficient and the derivative constant. The research program was written in the language of the C++ as the MFC class, on the MS Visual Studio 2010 platform. The main issue resolved in the article is the pioneering research of the process of control during manual and semi-automatic guidance of the Unmanned Aerial Vehicle, with a jet propulsion system to the coordinates of preset points of the flight route. Modelling of the flight control system takes into account: the logical network of operations of the simulation program, the pilot-operator model, the set motion and control deviations as well as the flight control laws. In addition, modeling of the control system takes into account the drive model, engine dynamics, engine thrust, the model of steering actuators and the model of external loads. In contrast, the external load model takes into account the external forces acting on the unmanned aircraft, including gravitational forces and moments, aerodynamic forces and moments, aerodynamic drag, aerodynamic lateral forces, aerodynamic lift forces, aerodynamic heeling moment, mechanism of local angle of attack from damping torque and forces and moments from the engine.


2011 ◽  
Vol 121-126 ◽  
pp. 764-767 ◽  
Author(s):  
Hong Jun Zhang ◽  
Lu Wen Jun ◽  
Li Biao Tong

Flight control system (FCS) is the command center for the unmanned aerial vehicle (UAV). A low-cost, high-precision micro-UAV attitude calibration table is designed by utilizing the structure of the vertical gyroscope of the flight attitude angle sensor. The detection device for the UAV FCS developed by loop-in-simulation achieves unmanned attitude calibration and overall performance detection of the FCS.


Sign in / Sign up

Export Citation Format

Share Document