Subsample Time Delay Estimation by Quadratic Interpolation of Correlation Function of Digitized Ultrasonic Probing Signals

Author(s):  
Sergey Gerasimov ◽  
Vladimir Glushnev ◽  
Igor Zhelbakov
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
O.A. Guschina ◽  
◽  
T.Ya. Shevgunov ◽  

This paper deals with the problem of subsample time delay estimation of complex signal based on polynomial interpolation. Time delay estimation is performed by cross-correlation time approach. Three polynomial interpolation techniques applied to the discrete complex cross-correlation function in the neighborhood of its maximum are proposed. These methods show high processing speed and allow obtaining accurate real-valued time delay estimation when digital complex signals are processed. The comparative analysis between these methods is performed. A rigorous analytical solution for the correction of time delay estimation for one of the proposed methods is obtained for the case of the third-order polynomial interpolation. This solution is applied for an equidistant grid of discrete cross-correlation function samples. One can improve the accuracy of time delay estimates by using aforementioned correction. A numerical simulation is performed to quantify the accuracy of the time delay estimates when using the proposed methods for the case where a stationary random process described by the first-order autoregressive mode is chosen as a model of original signal. The main results were presented and discussed at XIV All-Russian conference “Radar and telecommunication”.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This article proposes a novel adaptive super-twisting sliding mode control scheme with a time-delay estimation technique (ASTSMC-TDE) to control the yaw angle of a single ducted-fan unmanned aerial vehicle system. Such systems are highly nonlinear; hence, the proposed control scheme is a combination of several control schemes; super-twisting sliding mode, TDE technique to estimate the nonlinear factors of the system, and an adaptive sliding mode. The tracking error of the ASTSMC-TDE is guaranteed to be uniformly ultimately bounded using Lyapunov stability theory. Moreover, to enhance the versatility and the practical feasibility of the proposed control scheme, a comparison study between the proposed controller and a proportional-integral-derivative controller (PID) is conducted. The comparison is achieved through two different scenarios: a normal mode and an abnormal mode. Simulation and experimental tests are carried out to provide an in-depth investigation of the performance of the proposed ASTSMC-TDE control system.


Sign in / Sign up

Export Citation Format

Share Document