Human hand gesture detection based on EMG signal using ANN

Author(s):  
Md. Mehedi Hasan ◽  
Arifur Rahaman ◽  
Md. Faisal Shuvo ◽  
Md. Abu Saleh Ovi ◽  
Md. Mostafizur Rahman
2020 ◽  
Vol 20 (10) ◽  
pp. 2040028
Author(s):  
YONG-UN JO ◽  
DO-CHANG OH

It is very useful in the human computer interface to quickly and accurately recognize human hand movements in real time. In this paper, we aimed to robustly recognize hand gestures in real time using Convolutional Recurrent Neural Network (CRNN) with pre-processing and overlapping window. The CRNN is a deep learning model that combines Long Short-Term Memory (LSTM) for time-series information classification and Convolutional Neural Network (CNN) for feature extraction. The sensor for hand gesture detection uses Myo-armband, and six hand gestures are recognized and classified, including two grips, three hand signs, and one rest. As the essential pre-processing due to the characteristics of EMG data, the existing Short Time Fourier Transform (STFT), Continuous-time Wavelet Transform (CWT), and newly proposed Scale Average Wavelet Transform (SAWT) are used, and thus, the SAWT showed relatively high accuracy in the stationary environmental test. The CRNN with overlapping window has been proposed that can improve the degradation of real-time prediction accuracy, which is caused by inconsistent start time and hand motion speed when acquiring the EMG signal. In the stationary environmental test, the CRNN model with SAWT and overlapping window showed the highest accuracy of 92.5%. In the real-time environmental test, for all subjects learning, 80% accuracy and 0.99 s time delay were obtained on average, and for individual learning, 91.5% accuracy and 0.32 s time delay were obtained on average. As a result, in both stationary and real-time tests, the CRNN with SAWT and overlapping window showed better performance than the other methods.


2012 ◽  
Vol 6 ◽  
pp. 98-107 ◽  
Author(s):  
Amit Gupta ◽  
Vijay Kumar Sehrawat ◽  
Mamta Khosla

2014 ◽  
Vol 5 (3) ◽  
pp. 25-48
Author(s):  
Girish Sriram ◽  
Alex Jensen ◽  
Steve C. Chiu

The human hand along with its fingers possess one of the highest numbers of nerve endings in the human body. It thus has the capacity for the richest tactile feedback for positioning capabilities. This article shares a new technique of controlling slippage. The sensing system used for the detection of slippage is a modified force sensing resistor (FSR®). The control system is a fuzzy logic control algorithm with multiple rules that is designed to be processed on a mobile handheld computing platform and integrated/working alongside a traditional Electromyography (EMG) or Electroencephalography (EEG) based control system used for determining position of the fingers. A 5 Degrees of Freedom (DOF) hand, was used to test the slippage control strategy in real time. First a reference EMG signal was used for getting the 5 DOF hand to grasp an object, using position control. Then a slip was introduced to see the slippage control strategy at work. The results based on the plain tactile sensory feedback and the modified sensory feedback are discussed.


Sign in / Sign up

Export Citation Format

Share Document