Path tracking control considering center of gravity shift and load change for an omni-directional walker

Author(s):  
Renpeng Tan ◽  
Shuoyu Wang ◽  
Yinlai Jiang
Author(s):  
Renpeng Tan ◽  
Shuoyu Wang ◽  
Yinlai Jiang ◽  
Kenji Ishida ◽  
Masakatsu G. Fujie

With the increase in the percentage of the population defined as elderly, increasing numbers of people suffer from walking disabilities due to illness or accidents. An omni-directional walker (ODW) has been developed that can support people with walking disabilities and allow them to perform indoor walking. The ODW can identify the user’s directional intention based on the user’s forearm pressures and then supports movement in the intended direction. In this chapter, a reference trajectory is generated based on the intended direction in order to support directed movement. The ODW needs to follow the generated path. However, path tracking errors occur because the center of gravity (COG) of the system shifts and the load changes due to user`s pressure. An adaptive control method is proposed to deal with this issue. The results of simulations indicate that the ODW can accurately follow the user’s intended direction by inhibiting the influence of COG shifts and the resulting load change. The proposed scheme is feasible for supporting indoor movement.


2010 ◽  
Vol 2010.48 (0) ◽  
pp. 323-324
Author(s):  
Renpeng Tan ◽  
Shuoyu Wang ◽  
Yinlai Jiang ◽  
Naoki Miura ◽  
Kenji Ishida

2013 ◽  
pp. 614-622
Author(s):  
Renpeng Tan ◽  
Shuoyu Wang ◽  
Yinlai Jiang ◽  
Kenji Ishida ◽  
Masakatsu G. Fujie

With the increase in the percentage of the population defined as elderly, increasing numbers of people suffer from walking disabilities due to illness or accidents. An omni-directional walker (ODW) has been developed that can support people with walking disabilities and allow them to perform indoor walking. The ODW can identify the user's directional intention based on the user's forearm pressures and then supports movement in the intended direction. In this chapter, a reference trajectory is generated based on the intended direction in order to support directed movement. The ODW needs to follow the generated path. However, path tracking errors occur because the center of gravity (COG) of the system shifts and the load changes due to user`s pressure. An adaptive control method is proposed to deal with this issue. The results of simulations indicate that the ODW can accurately follow the user's intended direction by inhibiting the influence of COG shifts and the resulting load change. The proposed scheme is feasible for supporting indoor movement.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Donghoon Kim ◽  
Sungwook Yang

Most of the spherical unmanned aerial vehicles (SUAVs) use control surfaces, which are functions of aileron and an elevator, to generate control torque. The work proposes a new conceptual design of an SUAV system controlled through center-of-gravity (CG) variations with its path-tracking control law designed for the system. Compared to the one using control surfaces, the concept suggested is beneficial in the aspect of the expandability of building lighter and smaller SUAVs, especially. A CG variation principle by actuating a pendulum type of a moving part is considered as a methodology for both translational and rotational motion control of an SUAV. Since variations of the moment-of-inertia (MOI) elements which resulted from the motion of the moving part affect the performance of the suggested method, the variations of MOI analysis are performed for all angular ranges of the moving part. As a result, certain angular ranges for the moving part to prevent the degradation of the path-tracking performance by the effect of the MOI changes are found. By considering the findings, numerical studies are performed for hovering, ascent, descent, and horizontal tracking missions. The applicability of the proposed SUAV system and the corresponding controller to achieve the path-tracking missions is demonstrated through the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document