high clearance
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Weijun Wang ◽  
Jing’an Feng ◽  
Wenkang Wan ◽  
Peng Zhang ◽  
Songlin Yang

To research the influence of liquid sloshing on the driving stability of high-clearance sprayers, this paper builds an equivalent liquid sloshing mechanical model and obtains the stochastic acceleration excitation of the rectangular spray tank using the Adams kinetic model, thus obtaining the relationship between the impact force, moment, and the stochastic acceleration using Fluent numerical simulation analysis. This paper makes further calculations with MATLAB/Simulink system models, and the result from comparing these two calculations shows that the equivalent strategy proposed in this paper has a better consistency. Based on the consideration of the acting forces of the additional moment due to lateral movement of the center of mass of the liquid and the dynamic pressure due to liquid sloshing in the tank, this paper builds a mathematical model of the sprayer and researches the influence of the filling ratio and vehicle velocity on the vehicle stability through stochastic acceleration excitation. The results show that, in the case of different speeds, the liquid sloshing has a small influence on the overall roll angle; in the case of different filling ratios, the liquid sloshing has a big influence on the overall roll angle, the slip angle of the center of mass, and the yaw angular velocity; the filling ratio k = 0.85 and the speed u = 1 m/s−2 m/s are safe operation parameters of the sprayer. This research provides reference solutions for the stability control and optimization problems of the high-clearance sprayer and semitrailer.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6753
Author(s):  
Wei Qiu ◽  
Xinyue Yao ◽  
Yue Zhu ◽  
Hao Sun ◽  
Liangfu Zhou ◽  
...  

Medium and small-scale high-clearance sprayers are widely applied in medium and small-scale farms. Owing to power and load limitations, it is difficult to manage the complex system for suppressing spray boom vibration. This study was conducted to design a spray boom-air suspension system suitable for medium and small-size high-clearance sprayers by combining spray boom vibration suppression and the characteristics of air spring charging/discharging. Thus, this study aims to address the non-homogeneous distribution of spray triggered by the spray boom vibrations in medium and small high-clearance sprayers. The effects of different elastic elements on the vibration suppression effect of the spray boom were compared. According to the bench test, the dynamic response results of the spray boom under transient and sinusoidal excitations indicate that air spring is more conducive to vibration suppression than coil spring. The results obtained from the field experiments indicate that under the low solid soil condition, the spray boom air suspension should match a small additional air chamber with a volume of approximately 0.6 L, and the damping coefficient of the damper should be approximately 1792 N·s/m. In the case of the high firm soil, the spray boom air suspension should match a large additional air chamber with a volume of approximately 3.6 L, while the damping coefficient of the damper should be set to approximately 1316 N·s/m. The soil with low moisture content and high firmness are unfavorable to the vibration suppression of the spray boom. This study provides a reference for enhancing the vibration suppression of the spray boom-air suspension and improving the spray uniformity of the sprayer.


Author(s):  
Wei Li ◽  
Enrong Mao ◽  
Suiying Chen ◽  
Zhen Li ◽  
Bin Xie ◽  
...  

A slip rate control system aimed at improving the working efficiency and driving stability of a high clearance sprayer was developed. First, the two-pump, two-anti-slip control (ASC) valve, four-motor “X” drive scheme hydraulic slip rate control system was designed, and a mathematical model of the system as well as a vehicle dynamics model were established. The system includes a slip rate control strategy, a proportional-integral-derivative control method and a fuzzy adaptive proportional-integral-derivative sprayer control method. To verify the performance of the system, a simulation model was developed using MATLAB/Simulink, and the performance of the two control methods were compared. Additionally, an actual vehicle test platform was built based on 3WPG-3000 high clearance self-propelled sprayer independently developed by the research group. The simulation results revealed that when a wheel slipped, the slip rate control system was able to control the wheel slip rate and keep it within the threshold value of 0.1, thus meeting the operating requirements of the sprayer. The field test results revealed that in field operations with a low adhesion coefficient, the system was able to maintain a nearly unchanged wheel speed in both fixed speed mode and variable speed mode, maintaining a slip rate below the target of 0.1 “when in a straight running mode” in both cases. Altogether, the results of the simulation and field test verify the stability, accuracy, and practicability of the system.


Author(s):  
Adli Fikri Ahmad Sayuti ◽  
Rohazrin Abdul Rani ◽  
Nurul Ahmad Sayuti

After the pineapple crop is 15 months old, the pineapple will be harvested and pruning process will be done before fertilization work begin. Normally in conventional method, farmers will use a sharp machete or sickle to pruning the leave since pineapple leaves and cob have a high fibers content causing the leaves and cob break easily. The convention method requires a lot of time as well as the need for a large labor force, and the cost of production would also increase in this regard. The objective of the study was to evaluate the performance and effectiveness pruning using a mechanization approach compare to the conventional method in pruning the pineapple crop. In 11th Malaysia plan (RMK-11) a new concept and prototype were developed with 2 blade disc type, powered by gearbox 1:3 ratio and adjustable height for peat soil condition. Using of 38hp of tractor high clearance rubber trek with powered by PTO (Power take off) speed 540 and rpm 1500.The height of the cutter blade can be adjustable according to the height of the crop needed to be pruned. The machine capable working rate is 0.86 ha/hour, speed tractor is 2.03km/hour and the machine efficiency are 92 %. Machined time operation is up to 1.2 hour/ha and operating for 8.4 ha/per-day. As a result, the machine seems have a clean-cut result on pineapple leaves and cob without breaking the pineapple crop.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4156
Author(s):  
Luís B. P. Nascimento ◽  
Dennis Barrios-Aranibar ◽  
Vitor G. Santos ◽  
Diego S. Pereira ◽  
William C. Ribeiro ◽  
...  

The planning of safe paths is an important issue for autonomous robot systems. The Probabilistic Foam method (PFM) is a planner that guarantees safe paths bounded by a sequence of structures called bubbles that provides safe regions. This method performs the planning by covering the free configuration space with bubbles, an approach analogous to a breadth-first search. To improve the propagation process and keep the safety, we present three algorithms based on Probabilistic Foam: Goal-biased Probabilistic Foam (GBPF), Radius-biased Probabilistic Foam (RBPF), and Heuristic-guided Probabilistic Foam (HPF); the last two are proposed in this work. The variant GBPF is fast, HPF finds short paths, and RBPF finds high-clearance paths. Some simulations were performed using four different maps to analyze the behavior and performance of the methods. Besides, the safety was analyzed considering the new propagation strategies.


2021 ◽  
Vol 5 (2) ◽  
pp. p60
Author(s):  
Long Youneng

This paper introduces the representative domestic and foreign high-gap sprayer models, and expounds the current research status of the steering system of the high-gap sprayer, which provides reference for the further development of high-gap sprayer and other products in domestic enterprises and universities.


2021 ◽  
Vol 5 (2) ◽  
pp. p27
Author(s):  
Long Youneng

A hydraulic assisted steering method was proposed to solve the problem of steering instability caused by insufficient reverse resistance moment of wheel hub motor in four-wheel independently electrically driven high clearance sprayer. Firstly, the principle of steering chassis structure of four-wheel independently electrically driven high clearance sprayer is briefly introduced. On this basis, hydraulic auxiliary steering system is designed. Then a simplified 2-DOF vehicle steering model is established to analyze the Angle control of the auxiliary steering system. Finally, simulation and road surface test are carried out respectively to verify the performance of steering and auxiliary steering coordination control. Under the working conditions of the steering system alone and the steering system and the auxiliary steering system together, the four-wheel electric drive sprayer carried out the obstacle crossing test and the downslope test with the slope of 15° respectively at the speed of 1 m/s on the smooth road surface. The test results show that in the downhill test, the maximum tracking deviation of the steering system alone is 6.1°, the maximum tracking deviation of the steering and auxiliary steering coordination is 0.9°, the maximum tracking deviation of the steering system alone is 12.0°, and the maximum tracking deviation of the steering and auxiliary steering coordination is 1.2° in the obstacle breaking test. The test results verify the feasibility and stability of the hydraulic steering system proposed in this paper. The system has good test performance and can meet the practical requirements.


2021 ◽  
Author(s):  
Chen Ning ◽  
Yin Qian ◽  
Zhaojie Zhang ◽  
Tengfei Shen ◽  
Xiaoqiang Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document