Recognition of two dimensional objects based on a novel generalized Hough transform method

Author(s):  
K.C. Wong ◽  
H.C. Sim ◽  
J. Kittler
1989 ◽  
Vol 43 (4) ◽  
pp. 417-419
Author(s):  
Shingo Nishie ◽  
Susumu Itoh ◽  
Toshio Utsunomiya

Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 885
Author(s):  
Yoanda Alim Syahbana ◽  
Yokota Yasunari ◽  
Morita Hiroyuki ◽  
Aoki Mitsuhiro ◽  
Suzuki Kanade ◽  
...  

The detection of nystagmus using video oculography experiences accuracy problems when patients who complain of dizziness have difficulty in fully opening their eyes. Pupil detection and tracking in this condition affect the accuracy of the nystagmus waveform. In this research, we design a pupil detection method using a pattern matching approach that approximates the pupil using a Mexican hat-type ellipse pattern, in order to deal with the aforementioned problem. We evaluate the performance of the proposed method, in comparison with that of a conventional Hough transform method, for eye movement videos retrieved from Gifu University Hospital. The performance results show that the proposed method can detect and track the pupil position, even when only 20% of the pupil is visible. In comparison, the conventional Hough transform only indicates good performance when 90% of the pupil is visible. We also evaluate the proposed method using the Labelled Pupil in the Wild (LPW) data set. The results show that the proposed method has an accuracy of 1.47, as evaluated using the Mean Square Error (MSE), which is much lower than that of the conventional Hough transform method, with an MSE of 9.53. We conduct expert validation by consulting three medical specialists regarding the nystagmus waveform. The medical specialists agreed that the waveform can be evaluated clinically, without contradicting their diagnoses.


Author(s):  
ZHI-YONG LIU ◽  
HONG QIAO ◽  
LEI XU

By minimizing the mean square reconstruction error, multisets mixture learning (MML) provides a general approach for object detection in image. To calculate each sample reconstruction error, as the object template is represented by a set of contour points, the MML needs to inefficiently enumerate the distances between the sample and all the contour points. In this paper, we develop the line segment approximation (LSA) algorithm to calculate the reconstruction error, which is shown theoretically and experimentally to be more efficient than the enumeration method. It is also experimentally illustrated that the MML based algorithm has a better noise resistance ability than the generalized Hough transform (GHT) based counterpart.


Author(s):  
Sergio Rubén Geninatti ◽  
José Ignacio Benavides Benítez ◽  
Manuel Hernández Calviño ◽  
Nicolás Guil Mata ◽  
Juan Gómez Luna

Sign in / Sign up

Export Citation Format

Share Document