Estimation of signal-dependent noise level function using multi-column convolutional neural network

Author(s):  
Jingyu Yang ◽  
Xin Liu ◽  
Xiaolin Song ◽  
Kun Li
2019 ◽  
Vol 11 (20) ◽  
pp. 2379 ◽  
Author(s):  
Ting Pan ◽  
Dong Peng ◽  
Wen Yang ◽  
Heng-Chao Li

Despeckling is a longstanding topic in synthetic aperture radar (SAR) images. Recently, many convolutional neural network (CNN) based methods have been proposed and shown state-of-the-art performance for SAR despeckling problem. However, these CNN based methods always need many training data or can only deal with specific noise level. To solve these problems, we directly embed an efficient CNN pre-trained model for additive white Gaussian noise (AWGN) with Multi-channel Logarithm with Gaussian denoising (MuLoG) algorithm to deal with the multiplicative noise in SAR images. This flexible pre-trained CNN model takes the noise level as input, thus only a single pre-trained model is needed to deal with different noise levels. We also use a detector to find the homogeneous region automatically to estimate the noise level of image as input. Embedded with MuLoG, our proposed filter can despeckle not only single channel but also multi-channel SAR images. Finally, both simulated and real (Pol)SAR images were tested in experiments, and the results show that the proposed method has better and more robust performance than others.


2019 ◽  
Vol 492 (1) ◽  
pp. 1329-1334 ◽  
Author(s):  
Razvan Ciuca ◽  
Oscar F Hernández

ABSTRACT We use a convolutional neural network to study cosmic string detection in cosmic microwave background (CMB) flat sky maps with Nambu–Goto strings. On noiseless maps, we can measure string tensions down to order 10−9, however when noise is included we are unable to measure string tensions below 10−7. Motivated by this impasse, we derive an information theoretic bound on the detection of the cosmic string tension Gμ from CMB maps. In particular, we bound the information entropy of the posterior distribution of Gμ in terms of the resolution, noise level and total survey area of the CMB map. We evaluate these bounds for the ACT, SPT-3G, Simons Observatory, Cosmic Origins Explorer, and CMB-S4 experiments. These bounds cannot be saturated by any method.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document