Extended logic programming applied to the specification of multi-agent systems and their computing environments

Author(s):  
J. Neves ◽  
J. Machado ◽  
C. Analide ◽  
P. Novais ◽  
A. Abelha
2008 ◽  
pp. 1360-1367
Author(s):  
Cesar Analide ◽  
Paulo Novais ◽  
José Machado ◽  
José Neves

The work done by some authors in the fields of computer science, artificial intelligence, and multi-agent systems foresees an approximation of these disciplines and those of the social sciences, namely, in the areas of anthropology, sociology, and psychology. Much of this work has been done in terms of the humanization of the behavior of virtual entities by expressing human-like feelings and emotions. Some authors (e.g., Ortony, Clore & Collins, 1988; Picard, 1997) suggest lines of action considering ways to assign emotions to machines. Attitudes like cooperation, competition, socialization, and trust are explored in many different areas (Arthur, 1994; Challet & Zhang, 1998; Novais et al., 2004). Other authors (e.g., Bazzan et al., 2000; Castelfranchi, Rosis & Falcone, 1997) recognize the importance of modeling virtual entity mental states in an anthropopathic way. Indeed, an important motivation to the development of this project comes from the author’s work with artificial intelligence in the area of knowledge representation and reasoning, in terms of an extension to the language of logic programming, that is, the Extended Logic Programming (Alferes, Pereira & Przymusinski, 1998; Neves, 1984). On the other hand, the use of null values to deal with imperfect knowledge (Gelfond, 1994; Traylor & Gelfond, 1993) and the enforcement of exceptions to characterize the behavior of intelligent systems (Analide, 2004) is another justification for the adoption of these formalisms in this knowledge arena. Knowledge representation, as a way to describe the real world based on mechanical, logical, or other means, will always be a function of the systems ability to describe the existent knowledge and their associated reasoning mechanisms. Indeed, in the conception of a knowledge representation system, it must be taken into attention different instances of knowledge.


2004 ◽  
Vol 41 (2-4) ◽  
pp. 135-169 ◽  
Author(s):  
W. Vasconcelos ◽  
D. Robertson ◽  
C. Sierra ◽  
M. Esteva ◽  
J. Sabater ◽  
...  

2011 ◽  
pp. 188-194
Author(s):  
Cesar Analide ◽  
Paulo Novais ◽  
José Machado ◽  
José Neves

The work done by some authors in the fields of computer science, artificial intelligence, and multi-agent systems foresees an approximation of these disciplines and those of the social sciences, namely, in the areas of anthropology, sociology, and psychology. Much of this work has been done in terms of the humanization of the behavior of virtual entities by expressing human-like feelings and emotions. Some authors (e.g., Ortony, Clore & Collins, 1988; Picard, 1997) suggest lines of action considering ways to assign emotions to machines. Attitudes like cooperation, competition, socialization, and trust are explored in many different areas (Arthur, 1994; Challet & Zhang, 1998; Novais et al., 2004). Other authors (e.g., Bazzan et al., 2000; Castelfranchi, Rosis & Falcone, 1997) recognize the importance of modeling virtual entity mental states in an anthropopathic way. Indeed, an important motivation to the development of this project comes from the author’s work with artificial intelligence in the area of knowledge representation and reasoning, in terms of an extension to the language of logic programming, that is, the Extended Logic Programming (Alferes, Pereira & Przymusinski, 1998; Neves, 1984). On the other hand, the use of null values to deal with imperfect knowledge (Gelfond, 1994; Traylor & Gelfond, 1993) and the enforcement of exceptions to characterize the behavior of intelligent systems (Analide, 2004) is another justification for the adoption of these formalisms in this knowledge arena. Knowledge representation, as a way to describe the real world based on mechanical, logical, or other means, will always be a function of the systems ability to describe the existent knowledge and their associated reasoning mechanisms. Indeed, in the conception of a knowledge representation system, it must be taken into attention different instances of knowledge.


Author(s):  
Cesar Analide ◽  
Paulo Novais ◽  
Jose Machado ◽  
Jose Neves

The work done by some authors in the fields of computer science, artificial intelligence, and multi-agent systems foresees an approximation of these disciplines and those of the social sciences, namely, in the areas of anthropology, sociology, and psychology. Much of this work has been done in terms of the humanization of the behavior of virtual entities by expressing human-like feelings and emotions. Some authors (e.g., Ortony, Clore & Collins, 1988; Picard, 1997) suggest lines of action considering ways to assign emotions to machines. Attitudes like cooperation, competition, socialization, and trust are explored in many different areas (Arthur, 1994; Challet & Zhang, 1998; Novais et al., 2004). Other authors (e.g., Bazzan et al., 2000; Castelfranchi, Rosis & Falcone, 1997) recognize the importance of modeling virtual entity mental states in an anthropopathic way. Indeed, an important motivation to the development of this project comes from the author’s work with artificial intelligence in the area of knowledge representation and reasoning, in terms of an extension to the language of logic programming, that is, the Extended Logic Programming (Alferes, Pereira & Przymusinski, 1998; Neves, 1984). On the other hand, the use of null values to deal with imperfect knowledge (Gelfond, 1994; Traylor & Gelfond, 1993) and the enforcement of exceptions to characterize the behavior of intelligent systems (Analide, 2004) is another justification for the adoption of these formalisms in this knowledge arena. Knowledge representation, as a way to describe the real world based on mechanical, logical, or other means, will always be a function of the systems ability to describe the existent knowledge and their associated reasoning mechanisms. Indeed, in the conception of a knowledge representation system, it must be taken into attention different instances of knowledge.


Author(s):  
Marco Bozzano ◽  
Giorgio Delzanno ◽  
Maurizio Martelli ◽  
Viviana Mascardi ◽  
Floriano Zini

Sign in / Sign up

Export Citation Format

Share Document