Abstract. This spring, super dust storms reappeared in East Asia after being absent for a (two) decade(s). The event caused enormous losses both in Mongolia and in China. Accurate simulation of such super sandstorms is valuable for the quantification of health damages, aviation risks, and profound impacts on the Earth system, but also to reveal the driving climate and the process of desertification. However, accurate simulation of dust life cycles is challenging mainly due to imperfect knowledge of emissions. In this study, the emissions that lead to the 2021 spring dust storms are estimated through assimilation of MODIS AOD and ground-based PM10 concentration data. To be able to use the AOD observations to represent the dust load, an Angstrom-based data screening is designed to select only observations that are dominated by dust. In addition, a non-dust AOD bias correction has been designed to remove the part of the AOD that could be attributed to other aerosols than dust. With this, the dust concentrations during the 2021 spring super storms could be reproduced and validated with concentration observations. The emission inversion results reveal that wind blown dust emissions originated from both China and Mongolia during spring 2021. Specifically, 18.3M and 27.2M ton of particles were released in Chinese desert and Mongolia desert respectively during these severe dust events. By source apportionment it has been estimated that 58 % of the dust deposited in the densely populated Fenwei Plain (FWP) in the northern China originate from transnational transport from Mongolia desert. For the North China Plain (NCP), local Chinese desert play a less significant roles in the dust affection; the long-distance transport from Mongolia contributes for about 69 % to the dust deposition in NCP, even if it locates more than 1000 km away from the nearest Mongolian desert.