Research on the Integration of High and Low Voltage Power Distribution Cabinet and Fault Monitoring Device Based on PLC and Inverter

Author(s):  
Zhou Lianyang
Author(s):  
Olalekan Kabiru Kareem ◽  
Aderibigbe Adekitan ◽  
Ayokunle Awelewa

Electric power is the bedrock of our modern way of life. In Nigeria, power supply availability, sufficiency and reliability are major operational challenges. At the generation and transmission level, effort is made to ensure status monitoring and fault detection on the power network, but at the distribution level, particularly within domestic consumer communities there are no fault monitoring and detection devices except for HRC fuses at the feeder pillar. Unfortunately, these fuses are sometimes replaced by a copper wire bridge at some locations rendering the system unprotected and creating a great potential for transformer destruction on overload. This study is focused on designing an on-site power system monitoring device to be deployed on selected household entry power cables for detecting and indicating when phase off, low voltage, high voltage, over current, and blown fuse occurs on the building’s incomer line. The fault indication will help in reducing troubleshooting time and also ensure quick service restoration. After design implementation, the test result confirms design accuracy, device functionality and suitability as a low-cost solution to power supply system fault monitoring within local communities.


2016 ◽  
Vol 136 (11) ◽  
pp. 878-883 ◽  
Author(s):  
Kazunori Nishimura ◽  
Yusaku Marui ◽  
Satonori Nishimura ◽  
Wataru Sunayama

1993 ◽  
Vol 113 (8) ◽  
pp. 881-888 ◽  
Author(s):  
Yasutomo Imai ◽  
Nobuyuki Fujiwara ◽  
Hiroshi Yokoyama ◽  
Tetsuro Shimomura ◽  
Koichi Yamaoka ◽  
...  

Author(s):  
Achmad Solih ◽  
Jamaaluddin Jamaaluddin

Panel system power distribution at Lippo Plaza Mall Sidoarjo consists of several parts, namely from Cubicle 20 KV, 20 KV step-down transformer for 380 V, then the supply to LVMDP (Low Voltage Main Distribution Panel) The new panel to the user. Before delivery to users to note that the power factor is corrected using a capacitor bank. Less good a power factor is turned into inductive load on the capacitor bank so that temperatures high  because of high load resulting capacitor bank erupt. To overcome in this study proposes a safety panel automation power distribution control system using a microcontroller. Control system microcontrollers for safety panel power distribution consists of: Microcontroller (Arduino Nano), Light sensor (LDR), temperature sensor (LM35DZ), LCD 16x2 I2C, Actuators (fan, buzzer, relay switch breaker network three phase), switch ( relay 5 VDC), ADC as Input data. The working principle of this microcontroller LM35DZ if the sensor detects a high temperature fan will flash, if the LDR sensor detects sparks then the buzzer will sound as a warning sign of the dangers and disconnected the electricity network. From the design of a safety tool for power distribution panels due to high temperatures or sparks as well as the expected rate of fire outbreaks can be prevented.


Author(s):  
Jamal Abdul-Kareem Mohammed ◽  
Arkan Ahmed Hussein ◽  
Sahar R. Al-Sakini

<p>Power distribution network in Iraq still suffers from significant problems regarding electricity distribution level. The most important problem is the disturbances that are occurring on lines voltages, which in turn, will negatively affect sensitive loads they feed on. Protection of these loads could be achieved efficiently and economically using the dynamic voltage restorer DVR when installed between the voltage source and load to inject required compensation voltage to the network during the disturbances period. The DVR mitigates these disturbances via restoring the load voltage to a pre-fault value within a few milliseconds. To control the DVR work, dq0 transformation concept and PID method with sinusoidal pulse-width modulation SPWM based converter had been used to correct the disturbances and thus enhance the power quality of the distribution network. The DVR performance was tested by MATLAB/Simulink with all kinds of expected voltage disturbances and results investigated the effectiveness of the proposed method.</p>


2001 ◽  
Vol 121 (8) ◽  
pp. 930-935 ◽  
Author(s):  
Hitoshi Sugimoto ◽  
Akira Asakawa ◽  
Shigeru Yokoyama ◽  
Kazuo Nakada

Electrician ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 33
Author(s):  
Osea Zebua ◽  
Noer Soedjarwanto ◽  
Jemi Anggara

Intisari — Stabilitas tegangan telah menjadi perhatian yang penting dalam operasi jaringan distribusi tenaga listrik. Ketidakstabilan tegangan dapat menyebabkan kerusakan pada peralatan-peralatan listrik bila terjadi dalam waktu yang lama. Makalah ini bertujuan untuk merancang dan membuat peralatan deteksi stabilitas tegangan jangka panjang pada jaringan tegangan rendah. Sensor tegangan dan sensor arus digunakan untuk memperoleh data tegangan dan arus. Mikrokontroler Arduino digunakan untuk memproses perhitungan deteksi stabilitas tegangan jangka panjang dari data tegangan yang diperoleh dari sensor. Hasil deteksi kondisi stabilitas tegangan ditampilkan dengan indikator lampu led. Hasil pengujian pada jaringan distribusi tegangan rendah tiga fasa menunjukkan bahwa peralatan dapat mendeteksi gangguan stabilitas tegangan jangka panjang secara online dan dinamis.Kata kunci — Deteksi, stabilitas tegangan jangka panjang, jaringan distribusi tegangan rendah. Abstract — Voltage stability has become important concern in the operation of electric power distribution networks. Voltage instability can cause damage to electrical equipments if it occurs for a long time. This paper aims to design and build long-term voltage stability detection equipment on low-voltage network. Voltage sensors and current sensors are used to obtain voltage and current data. The Arduino microcontroller is used to process calculation of long-term voltage stability detection from data obtained from the sensors. The results of detection of voltage stability conditions are displayed with the LED indicators. Test result on three-phase low-voltage distribution network shows that equipment can detect long–term voltage stability disturbance online and dynamically.Keywords— Detection, long-term voltage stability, low-voltage distribution network.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5863
Author(s):  
Arthur Santos ◽  
Gerald Duggan ◽  
Stephen Frank ◽  
Daniel Gerber ◽  
Daniel Zimmerle

Advances in power electronics and their use in Miscellaneous Electric Loads (MELs) in buildings have resulted in increased interest in using low-voltage direct current (DC) power distribution as a replacement for the standard alternating current (AC) power distribution in buildings. Both systems require an endpoint converter to convert the distribution system voltage to the MELs voltage requirements. This study focused on the efficiency of these endpoint converters by testing pairs of AC/DC and DC/DC power converters powering the same load profile. In contrast to prior studies, which estimated losses based on data sheet efficiency and rated loads, in this study, we used part load data derived from real-world time-series load measurements of MELs and experimentally characterized efficiency curves for all converters. The measurements performed for this study showed no systematic efficiency advantage for commercially available DC/DC endpoint converters relative to comparable, commercially available AC/DC endpoint converters. For the eight appliances analyzed with the pair of converters tested, in 50%, the weighted energy efficiency of the DC/DC converter was higher, while, for the other 50%, the AC/DC converter was. Additionally, the measurements indicated that the common assumption of using either data sheet efficiency values or efficiency at full load may result in substantial mis-estimates of the system efficiency.


Sign in / Sign up

Export Citation Format

Share Document