Continuous Box-Girder Bridge Condition Assessment Based on Structural Health Monitoring System: A Case Study

Author(s):  
Chuang Chen ◽  
Yinhui Wang ◽  
Mosbeh R. Kaloop ◽  
Tao Wang ◽  
Jiaxing Ma
Author(s):  
David Surachmat ◽  
Made Suangga

Structural health monitoring system plays a crucial role in order to ensure a well-maintained bridge condition. There are a number of methods that may be utilized in order to conduct the monitoring process, namely the use of Global Positioning System (GPS). Despite its accuracy, the use of GPS is deemed costly. A more practical and economical approach to predicting deflection is the use of tiltmeter to obtain rotational values. This research studied the accuracy of simple span steel box girder deflection that is obtained from regression formulae. The analysis showed that a 3D linear and quadratic regression with two rotation data provided the best accuracy if compared with 2D. Keywords: deflection; rotation; structural health monitoring system; tiltmeter AbstrakPemantauan kesehatan struktur jembatan (structural health monitoring system) sangat penting dilakukan untuk memastikan jembatan tetap dalam kondisi yang memadai. Banyak cara yang dapat dilakukan untuk memonitor kondisi jembatan, salah satunya dengan menggunakan Global Positioning System (GPS). Walaupun menghasilkan data yang akurat, penggunaan GPS dipandang menghabiskan biaya yang relatif besar. Adapun solusi yang lebih praktis dan murah untuk memprediksi defleksi yaitu dengan menggunakan tiltmeter dengan data rotasi. Pada studi ini, telah dipelajari tingkat akurasi defleksi jembatan steel box girder dengan bentang sederhana dari hasil persamaan regresi dengan data rotasi. Hasil analisis menunjukkan bahwa model regresi linear dan kuadratik 3D untuk 2 data rotasi memiliki tingkat akurasi lebih baik jika dibandingkan dengan model regresi linear dan kuadratik 2D untuk 2 data rotasi. 


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hao Wang ◽  
Aiqun Li ◽  
Tong Guo ◽  
Tianyou Tao

Structural health monitoring can provide a practical platform for detecting the evolution of structural damage or performance deterioration of engineering structures. The final objective is to provide reasonable suggestions for structural maintenance and management and therefore ensure the structural safety according to the real-time recorded data. In this paper, the establishment of the wind and structural health monitoring system (WSHMS) implemented on the Runyang Yangtze River Bridge (RYRB) in China is introduced. The composition and functions of the WSHMS are presented. Thereinto, the sensory subsystem utilized to measure the input actions and structural output responses is introduced. And the core functions of the data management and analysis subsystem (DMAS) including model updating, structural condition identification, and structural condition assessment are illustrated in detail. A three-stage strategy is applied into the FE model updating of RYRB, and a two-phase strategy is proposed to adapt to structural health diagnosis and damage identification. Considering the structural integral security and the fatigue characteristic of steel material, the condition assessment of RYRB is divided into structural reliability assessment and structural fatigue assessment, which are equipped with specific and elaborate module for effective operation. This research can provide references for the establishment of the similar structural health monitoring systems on other cable-supported bridges.


2016 ◽  
Vol 16 (04) ◽  
pp. 1640027 ◽  
Author(s):  
Yi-Qing Ni ◽  
Yun-Xia Xia

Strain provides information about local behavior of structural components, and is one of the most concerned parameters in the structural health monitoring (SHM) of civil structures. It plays an important role in the condition assessment of bridges in terms of fatigue or yielding of the structural material, safety reserve or reliability of structural components, etc. The Wind And Structural Health Monitoring System (WASHMS) deployed on the suspension Tsing Ma Bridge (TMB) in Hong Kong has hitherto operated continuously for 17 years. As part of the WASHMS, 110 strain gauges were installed on the bridge to measure the dynamic strain response of the TMB. Based on the strain measurement data acquired in 2012, the structural condition of the TMB is evaluated by addressing the following issues: (1) Evaluation of the characteristics of stress responses in structural members on different deck cross-sections and comparison with the results obtained in 1999. (2) Statistical analysis of daily maximum stresses in different members and comparison with the design values (designated stresses) due to live loads at both serviceability limit state (SLS) and ultimate limit state (ULS). (3) Evaluation of the inner forces of monitored structural members and the corresponding strength utilization factors (SUFs). The assessment results obtained in the present study can be used as a reference or guideline for scheduling the bridge inspection and maintenance activities.


2014 ◽  
Vol 619 ◽  
pp. 1-9 ◽  
Author(s):  
Chuang Chen ◽  
R. Kaloop Mosbeh ◽  
Zong Lin Wang ◽  
Qing Fei Gao ◽  
Jun Fei Zhong

Structural Health Monitoring is becoming an increasingly common tool to obtain the long-term performance of infrastructures and buildings. Many structural health monitoring systems were developed and applied to different bridges in the world. However, very little is known on the applications in extreme cold environment. Fu Sui Bridge, a 1070 m variable cross-section continuous box-girder bridge, is located in the coldest province -- Heilongjiang province, China. In order to monitor the static and dynamic responses of the bridge under the traffic and environmental variation, a long-term continuous monitoring system was designed and installed on Fu Sui Bridge in April 2012. A hydrostatic leveling system was used to measure the displacement and fiber Bragg grating sensors were used to measure strain, acceleration and temperature. Moreover, other necessary components including data acquisition and transmission, data calculation and analysis software are also described. Summer and winter monitoring data are also presented. This paper focuses on: (1) the design and installation of the long-term continuous monitoring system hardware and (2) the operating pattern and function of the automatic monitoring system. After more than one year successful conducting, the system has provided a large amount of data records for daily management and research of the bridge. This system can be applied to extremely cold region.


Author(s):  
Pradip Balbudhe ◽  
Disha Sune ◽  
Manjiri Kapkar ◽  
Shivani Meshram ◽  
Vidya Kaikade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document