Orbital Stability Analysis of Two-Relay Controller in Second Order Systems via Lyapunov Functions and Its Application to a 3-DOF Underactuated Helicopter

Author(s):  
Luis T. Aguilar ◽  
Daniel Espinoza
Author(s):  
A.A. Martynyuk ◽  
V.O. Chernienko

This article discusses essentially nonlinear systems. Following the approach of applying the pseudolinear inequalitiesdeveloped in a number of works, new estimates for the variation of Lyapunov functions along solutionsof the considered systems of equations are obtained. Based on these estimates, we obtain sufficient conditionsfor the equiboundedness of solutions of second-order systems and sufficient conditions for the stability of anessentially nonlinear system under large initial perturbations. Conditions for the stability of affine systems arealso obtained.


Computation ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 82
Author(s):  
Alejandro Rincón ◽  
Gloria M. Restrepo ◽  
Fredy E. Hoyos

In this study, a novel robust observer-based adaptive controller was formulated for systems represented by second-order input–output dynamics with unknown second state, and it was applied to concentration tracking in a chemical reactor. By using dead-zone Lyapunov functions and adaptive backstepping method, an improved control law was derived, exhibiting faster response to changes in the output tracking error while avoiding input chattering and providing robustness to uncertain model terms. Moreover, a state observer was formulated for estimating the unknown state. The main contributions with respect to closely related designs are (i) the control law, the update law and the observer equations involve no discontinuous signals; (ii) it is guaranteed that the developed controller leads to the convergence of the tracking error to a compact set whose width is user-defined, and it does not depend on upper bounds of model terms, state variables or disturbances; and (iii) the control law exhibits a fast response to changes in the tracking error, whereas the control effort can be reduced through the controller parameters. Finally, the effectiveness of the developed controller is illustrated by the simulation of concentration tracking in a stirred chemical reactor.


2020 ◽  
Vol 53 (2) ◽  
pp. 4611-4616
Author(s):  
Ramón I. Verdés ◽  
Luis T. Aguilar ◽  
Yury Orlov

2021 ◽  
Vol 11 (8) ◽  
pp. 3430
Author(s):  
Erik Cuevas ◽  
Héctor Becerra ◽  
Héctor Escobar ◽  
Alberto Luque-Chang ◽  
Marco Pérez ◽  
...  

Recently, several new metaheuristic schemes have been introduced in the literature. Although all these approaches consider very different phenomena as metaphors, the search patterns used to explore the search space are very similar. On the other hand, second-order systems are models that present different temporal behaviors depending on the value of their parameters. Such temporal behaviors can be conceived as search patterns with multiple behaviors and simple configurations. In this paper, a set of new search patterns are introduced to explore the search space efficiently. They emulate the response of a second-order system. The proposed set of search patterns have been integrated as a complete search strategy, called Second-Order Algorithm (SOA), to obtain the global solution of complex optimization problems. To analyze the performance of the proposed scheme, it has been compared in a set of representative optimization problems, including multimodal, unimodal, and hybrid benchmark formulations. Numerical results demonstrate that the proposed SOA method exhibits remarkable performance in terms of accuracy and high convergence rates.


Sign in / Sign up

Export Citation Format

Share Document