On the Use of Temporal and Spectral Central Moments of Forearm Surface EMG for Finger Gesture Classification

Author(s):  
Sneha Sharma ◽  
Rinki Gupta
2017 ◽  
Vol 50 (1) ◽  
pp. 11498-11503 ◽  
Author(s):  
Konstantin Akhmadeev ◽  
Elena Rampone ◽  
Tianyi Yu ◽  
Yannick Aoustin ◽  
Eric Le Carpentier

2011 ◽  
Vol 42 (01) ◽  
Author(s):  
Z. Bayraktaroglu ◽  
K. von Carlowitz-Ghori ◽  
F. Losch ◽  
G. Nolte ◽  
G. Curio ◽  
...  

2018 ◽  
Vol 27 (5) ◽  
pp. 1469-1476
Author(s):  
An-Sik Heo ◽  
Jung-Chul Lee ◽  
Jae-Young Park

2020 ◽  
Vol 129 (6) ◽  
pp. 1393-1404
Author(s):  
Joseph F. Welch ◽  
Patrick J. Argento ◽  
Gordon S. Mitchell ◽  
Emily J. Fox

Transcranial magnetic stimulation (TMS) is a noninvasive technique to assess neural impulse conduction along the cortico-diaphragmatic pathway. The reliability of diaphragm motor-evoked potentials (MEP) induced by TMS is unknown. Notwithstanding large variability in MEP amplitude, we found good-to-excellent reproducibility of all MEP characteristics (latency, duration, amplitude, and area) both within- and between-day in healthy adult men and women. Our findings support the use of TMS and surface EMG to assess diaphragm activation in humans.


2006 ◽  
Vol 100 (6) ◽  
pp. 1928-1937 ◽  
Author(s):  
Kevin G. Keenan ◽  
Dario Farina ◽  
Roberto Merletti ◽  
Roger M. Enoka

The purpose of the study was to evaluate the influence of selected physiological parameters on amplitude cancellation in the simulated surface electromyogram (EMG) and the consequences for spike-triggered averages of motor unit potentials derived from the interference and rectified EMG signals. The surface EMG was simulated from prescribed recruitment and rate coding characteristics of a motor unit population. The potentials of the motor units were detected on the skin over a hand muscle with a bipolar electrode configuration. Averages derived from the EMG signal were generated using the discharge times for each of the 24 motor units with lowest recruitment thresholds from a population of 120 across three conditions: 1) excitation level; 2) motor unit conduction velocity; and 3) motor unit synchronization. The area of the surface-detected potential was compared with potentials averaged from the interference, rectified, and no-cancellation EMGs. The no-cancellation EMG comprised motor unit potentials that were rectified before they were summed, thereby preventing cancellation between the opposite phases of the potentials. The percent decrease in area of potentials extracted from the rectified EMG was linearly related to the amount of amplitude cancellation in the interference EMG signal, with the amount of cancellation influenced by variation in excitation level and motor unit conduction velocity. Motor unit synchronization increased potentials derived from both the rectified and interference EMG signals, although cancellation limited the increase in area for both potentials. These findings document the influence of amplitude cancellation on motor unit potentials averaged from the surface EMG and the consequences for using the procedure to characterize motor unit properties.


Sign in / Sign up

Export Citation Format

Share Document