Proportional integral sliding mode observer for uncertain Takagi Sugeno systems with unknown inputs

Author(s):  
Ilyes Elleuch ◽  
Atef Khedher ◽  
Kamel Ben Othmen
Author(s):  
Xiaocong He ◽  
Lingfei Xiao

Abstract This paper presents a robust fault identification scheme based on fractional-order integral sliding mode observer (FOISMO) for turbofan engine sensors with uncertainties. The equilibrium manifold expansion (EME) model is introduced due to its simplicity and accuracy for nonlinear system. A fractional-order integral sliding mode observer is designed to reconstruct faults on sensors, in which the fractional-order integral sliding surface guarantees the fast convergence of reconstruction. The observer parameters is selected according to L2 gain theory in order to minimize the effect of uncertainties on the fault reconstruction signal. Simulations in Matlab/Simulink show high reconstruction accuracy of the proposed method despite the present of uncertainties.


Author(s):  
Cheng Cheng ◽  
Songyong Liu ◽  
Hongzhuang Wu

This paper proposes an observer-based sliding mode control method for electro-hydraulic servo systems with uncertain nonlinearities, external disturbances, and immeasurable states. The mathematical model is built based on the principle of electro-hydraulic servo systems. Owing to its highly robustness and finite time properties, the sliding mode observer is chosen and designed to estimate the velocity and the equivalent pressure online only using the position feedback. Then, in order to tackle the chattering problem of conventional sliding mode control and increase the control accuracy, a novel second-order sliding mode control scheme is proposed based on the fractional-order proportional–integral–derivative sliding surface and the state observer. The stability of the overall system is proved by Lyapunov theory. Finally, the detailed simulations are conducted, which include the comparative analysis of control performance with other methods and the study of observation performance.


Sign in / Sign up

Export Citation Format

Share Document