High performance fuzzy-proportional integral-sliding mode controller for chattering-free speed control of induction motors

Author(s):  
H.A.F. Mohamed ◽  
Hew Wooi Ping ◽  
N.A. Rahim
2021 ◽  
Vol 3 (3) ◽  
pp. 10-19
Author(s):  
Samar Abdulkareem AL-Hashemi ◽  
Ayad AL-Dujaili ◽  
Ahmed R. Ajel

Induction motors are widely used in commercial and industrial applications due to their robustness, high efficiency, low maintenance requirements and durability among other reasons. Consequently, their speed should be controlled for better performance. This paper describes utilization of a scalar speed control of a three-phase squirrel cage induction motor (SCIM) to control a motor’s speed using an integral sliding mode controller (ISMC). The controller was tested under various operating conditions. The results are compared with a case employing a conventional PI controller. It was found that speed control by ISMC has a 0.16 RPM steady-state error, 0.03 s to reach steady-state from a standstill, and a 5% overshoot. All of these are lower values as compared to the results of a conventional PI controller. In this paper, the robustness of each controller to uncertainties is checked. Simulation results show the advantages of ISMC control methods. The system is simulated using MATLAB SIMULINK R2017a.


Author(s):  
Abdeldjebar Hazzab ◽  
Bousserhane Ismail Khalil ◽  
Mokhtar Kamli ◽  
Mostefa Rahli

In this paper, an adaptive fuzzy PI-sliding mode control (AFPISMC) is proposed for induction motor (IM) speed control. First, an adaptive sliding-mode controller (APISMC) with a proportional plus integral equivalent control action is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameters. The proposed control design uses the fuzzy logic techniques to dynamically control parameter settings of the SMC equivalent control action. The theoretical analyses for the proposed fuzzy PI-sliding-mode controller are described in detail. Simulated results show that the proposed controller provides high-performance dynamic characteristics and is robust with regard to plant parameter variations and external load disturbance.


2012 ◽  
Author(s):  
Mohamad Noh Ahmad ◽  
Johari H. S. Osman ◽  
Mohd. Ruddin A. Ghani

Kertas kerja ini membincangkan pengawal ragam gelangsar ternyahpusat untuk sistem dalam kategori takpasti, tak lelurus tersaling hubung. Andaian yang dipakai dalam kertas kerja ini ialah loji yang hendak dikawal dianggap sebagai suatu sistem yang diwakili oleh subsistem–subsistem yang tersaling hubung di antara satu sama lain dan dinamik setempat untuk setiap subsistem pula diwakili oleh nilai nominalnya di samping ketakpastian berparameter terbatas. Di samping itu, dinamik untuk saling hubungan di antara subsistem juga diandaikan sebagai diwakili dengan cara yang serupa dan syarat padanan (matching conditions) benar untuk semua subsistem. Suatu pengawal ragam gelangsar ternyahpusat yang robust telah berjaya dihasilkan supaya untuk setiap subsistem, trajektori sebenar sistem akan menjejak trajektori yang dikehendaki menggunakan hanya mklumat dari pemboleh ubah keadaan setempat. Ragam gelangsar berkadaran–kamiran (Pi) sengaja dipilih untuk memastikan kestabilan dinamik keseluruhan sistem terjamin (meliputi fasa menjangkau dan fasa menggelangsar). Pembuktian secara matematik pengawal yang dicadangkan turut diketengahkan dalam kertas kerja ini dan keputusannya pula diperiksa benar tidaknya melalui satu kajian kes. Kata kunci: Sistem skala besar; Kawalan ragam gelangsar ternyahpusat; Pengawal menjejak; Ketakpastian terpadan A decentralized sliding mode controller for a class of nonlinear interconnected uncertain systems is presented in this paper. It is assumed that the plant to be controlled is represented by interconnected sub–systems and the local dynamics of each sub–system is represented by its nominal and bounded parametric uncertainties. It is also assumed that the interconnection dynamics is also represented in the same manner and it is further assumed that the matching conditions hold for every sub–system. A robust decentralized sliding mode controller is derived such that for each sub–system, the actual trajectory tracks the desired trajectory using only the local states information. The Proportional–Integral sliding mode is chosen to ensure the stability of the overall dynamics during the entire period i.e. the reaching phase and the sliding phase. Mathematical proof of the proposed controller is presented and the results are verified using a case study. Key words: Large scale system; Decentralized sliding mode control; Tracking controller; Matched uncertainties


Author(s):  
Haris Calgan

Purpose This study aims to design and implement a novel tilt integral sliding mode controller and observer for sensorless speed control of a permanent magnet synchronous motor (PMSM). Design/methodology/approach A control strategy combining the tilt integral derivative (TID) with sliding mode control (SMC) is proposed to determine the tilt integral sliding mode manifold. Using this manifold, tilt integral sliding mode controller (TISMC) and observer (TISMO) are designed. The stabilities are verified by using Lyapunov method. To prove the effectiveness and robustness of proposed methods, sensorless speed control of PMSM is performed for various operating conditions such as constant and variable speed references, load disturbance injection, parameter perturbation, whereas sensor noises are not taken into account. The performance of proposed method is compared with TID controller, proportional integral derivative controller and conventional SMO. Findings Simulation results demonstrate that TISMC and TISMO have better performance in all operating conditions. They are robust against parameter uncertainties and disturbances. TISM based sensorless control of PMSM is well guaranteed with superior performance. Originality/value The proposed method has not been tackled in the literature. By combining TID and SMC, novel tilt integral sliding manifold is presented and used in designing of the controller and observer. It is proven by Lyapunov method that errors converge to zero.


Sign in / Sign up

Export Citation Format

Share Document