Robust control of a variable-speed wind turbine with fixed pitch angle and strategy MPPT control associated on a PMSG

Author(s):  
L. Saihi ◽  
A. Boutera
2020 ◽  
Vol 6 ◽  
pp. 423-427 ◽  
Author(s):  
Atif Iqbal ◽  
Deng Ying ◽  
Adeel Saleem ◽  
Muhammad Aftab Hayat ◽  
Kashif Mehmood

2017 ◽  
Vol 7 (2) ◽  
pp. 1436-1443 ◽  
Author(s):  
H. Bassi ◽  
Y. A. Mobarak

Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC) approach. The proposed approach provides maximum power point tracking (MPPT), whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.


Author(s):  
Jared B. Garrison ◽  
Michael E. Webber

Currently, wind and solar technologies only generate 0.77% and 0.014% of the U.S. electricity consumption, respectively [1]. Though only a small portion of total U.S. electricity production, both sources have seen significant growth recently. For instance, Texas has more than quadrupled its installed wind capacity over the period from 2005–2009 with new installations totaling over 9400 MW [2, 3]. These two resources are globally available and have the potential to generate massive amounts of electricity. As the amount of installed wind turbines continues to grow, gaining better knowledge of their operation and their dynamic response to changing wind conditions is important to ensure their smooth integration and safe operation. The goal of this research is to analyze the dynamic and steady state operations of a 1.5 MW variable speed wind turbine that uses an external rotor resistive control mechanism. The addition of the external generator rotor resistance allows for adjustment of the generator slip and employs a feedback controller that maintains constant power output at all air velocities between the rated wind speed and cut-out wind speed. Using the electronic programming language PSCAD/EMTDC the model simulates the dynamic response to changing wind conditions, as well as the performance under all wind conditions. The first task of the model was to determine which blade pitch angle produces a maximum power output of 1.5 MW. A sweep was used where the simulation runs over the entire range of wind speeds for a selected pitch angle to find which speed resulted in maximum power output. This sweep was used for numerous blade pitch angles until the combination of wind speed and pitch angle at 14.4 m/s and −0.663°, respectively, resulted in a maximum power of 1.5 MW. The second task was to evaluate the model’s dynamic response to changes in wind conditions as well as steady state operation over all wind speeds. The dynamic response to an increase or decrease in wind speed is important to the safety and life expectancy of a wind turbine because unwanted spikes and dips can occur that increase stresses in the wind turbine and possibly lead to failure. In order to minimize these transient effects, multiple controllers were implemented in order to test each ones’ dynamic response to increasing and decreasing changes in wind velocity. These simulations modeled the characteristics of a variable-speed wind turbine with constant power rotor resistive control. First, through calibrating the model the design specifications of blade pitch and wind speed which yield the peak desired output of 1.5 MW were determined. Then, using the method of controlling the external rotor resistance, the simulation was able to maintain the 1.5 MW power output for all wind speeds between the rated and cutout speeds. Also, by using multiple controllers, the dynamic response of the control scheme was improved by reducing the magnitude of the initial response and convergence time that results from changes in wind speed. Finally, by allowing the simulation to converge at each wind speed, the steady state operation, including generator power output and resistive thermal losses, was characterized for all wind speeds.


Sign in / Sign up

Export Citation Format

Share Document