A two -step hybrid approach for voiceprint-biometric template protection

Author(s):  
Hua-Hong Zhu ◽  
Qian-Hua He ◽  
Yan-Xiong Li
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hailun Liu ◽  
Dongmei Sun ◽  
Ke Xiong ◽  
Zhengding Qiu

Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hailun Liu ◽  
Dongmei Sun ◽  
Ke Xiong ◽  
Zhengding Qiu

Fuzzy vault scheme (FVS) is one of the most popular biometric cryptosystems for biometric template protection. However, error correcting code (ECC) proposed in FVS is not appropriate to deal with real-valued biometric intraclass variances. In this paper, we propose a multidimensional fuzzy vault scheme (MDFVS) in which a general subspace error-tolerant mechanism is designed and embedded into FVS to handle intraclass variances. Palmprint is one of the most important biometrics; to protect palmprint templates; a palmprint based MDFVS implementation is also presented. Experimental results show that the proposed scheme not only can deal with intraclass variances effectively but also could maintain the accuracy and meanwhile enhance security.


2019 ◽  
Vol 63 (3) ◽  
pp. 479-493 ◽  
Author(s):  
Wadood Abdul ◽  
Ohoud Nafea ◽  
Sanaa Ghouzali

AbstractThere are a number of issues related to the development of biometric authentication systems, such as privacy breach, consequential security and biometric template storage. Thus, the current paper aims to address these issues through the hybrid approach of watermarking with biometric encryption. A multimodal biometric template protection approach with fusion at score level using fingerprint and face templates is proposed. The proposed approach includes two basic stages, enrollment stage and verification stage. During the enrollment stage, discrete wavelet transform (DWT) is applied on the face images to embed the fingerprint features into different directional sub-bands. Watermark embedding and extraction are done by quantizing the mean values of the wavelet coefficients. Subsequently, the inverse DWT is applied to obtain the watermarked image. Following this, a unique token is assigned for each genuine user and a hyper-chaotic map is used to produce a key stream in order to encrypt a watermarked image using block-cipher. The experimentation results indicate the efficiency of the proposed approach in term of achieving a reasonable error rate of 3.87%.


Author(s):  
Ayesha S. Shaikh ◽  
Vibha D. Patel

The IT security paradigm evolves from secret-based to biometric identity-based. Biometric identification has gradually become more popular in recent years for handheld devices. Privacy-preserving is a key concern when biometrics is used in authentication systems in the present world today. Nowadays, the declaration of biometric traits has been imposed not only by the government but also by many private entities. There are no proper mechanisms and assurance that biometric traits will be kept safe by such entities. The encryption of biometric traits to avoid privacy attacks is a giant problem. Hence, state-of-the-art safety and security technological solutions must be devised to prevent the loss and misuse of such biometric traits. In this paper, we have identified different cancelable biometrics methods with the possible attacks on the biometric traits and directions on possible countermeasures in order to design a secure and privacy-preserving biometric authentication system. We also proposed a highly secure method for cancelable biometrics using a non-invertible function based on Discrete Cosine Transformation and Index of max hashing. We tested and evaluated the proposed novel method on a standard dataset and achieved good results.


2019 ◽  
Vol 78 (13) ◽  
pp. 18339-18361 ◽  
Author(s):  
N. Sasikaladevi ◽  
K. Geetha ◽  
A. Revathi ◽  
N. Mahalakshmi ◽  
N. Archana

Sign in / Sign up

Export Citation Format

Share Document