Combining Watermarking and Hyper-Chaotic Map to Enhance the Security of Stored Biometric Templates

2019 ◽  
Vol 63 (3) ◽  
pp. 479-493 ◽  
Author(s):  
Wadood Abdul ◽  
Ohoud Nafea ◽  
Sanaa Ghouzali

AbstractThere are a number of issues related to the development of biometric authentication systems, such as privacy breach, consequential security and biometric template storage. Thus, the current paper aims to address these issues through the hybrid approach of watermarking with biometric encryption. A multimodal biometric template protection approach with fusion at score level using fingerprint and face templates is proposed. The proposed approach includes two basic stages, enrollment stage and verification stage. During the enrollment stage, discrete wavelet transform (DWT) is applied on the face images to embed the fingerprint features into different directional sub-bands. Watermark embedding and extraction are done by quantizing the mean values of the wavelet coefficients. Subsequently, the inverse DWT is applied to obtain the watermarked image. Following this, a unique token is assigned for each genuine user and a hyper-chaotic map is used to produce a key stream in order to encrypt a watermarked image using block-cipher. The experimentation results indicate the efficiency of the proposed approach in term of achieving a reasonable error rate of 3.87%.

Author(s):  
Kareem Kamal A. Ghany ◽  
Hossam M. Zawbaa

There are many tools and techniques that can support management in the information security field. In order to deal with any kind of security, authentication plays an important role. In biometrics, a human being needs to be identified based on some unique personal characteristics and parameters. In this book chapter, the researchers will present an automatic Face Recognition and Authentication Methodology (FRAM). The most significant contribution of this work is using three face recognition methods; the Eigenface, the Fisherface, and color histogram quantization. Finally, the researchers proposed a hybrid approach which is based on a DNA encoding process and embedding the resulting data into a face image using the discrete wavelet transform. In the reverse process, the researchers performed DNA decoding based on the data extracted from the face image.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Louis Asiedu ◽  
Bernard O. Essah ◽  
Samuel Iddi ◽  
K. Doku-Amponsah ◽  
Felix O. Mettle

The face is the second most important biometric part of the human body, next to the finger print. Recognition of face image with partial occlusion (half image) is an intractable exercise as occlusions affect the performance of the recognition module. To this end, occluded images are sometimes reconstructed or completed with some imputation mechanism before recognition. This study assessed the performance of the principal component analysis and singular value decomposition algorithm using discrete wavelet transform (DWT-PCA/SVD) as preprocessing mechanism on the reconstructed face image database. The reconstruction of the half face images was done leveraging on the property of bilateral symmetry of frontal faces. Numerical assessment of the performance of the adopted recognition algorithm gave average recognition rates of 95% and 75% when left and right reconstructed face images were used for recognition, respectively. It was evident from the statistical assessment that the DWT-PCA/SVD algorithm gives relatively lower average recognition distance for the left reconstructed face images. DWT-PCA/SVD is therefore recommended as a suitable algorithm for recognizing face images under partial occlusion (half face images). The algorithm performs relatively better on left reconstructed face images.


Author(s):  
Seyed Omid Shahdi ◽  
S. A. R. Abu-Bakar

At present, frontal or even near frontal face recognition problem is no longer considered as a challenge. Recently, the shift has been to improve the recognition rate for the nonfrontal face. In this work, a neural network paradigm based on the radial basis function approach is proposed to tackle the challenge of recognizing faces in different poses. Exploiting the symmetrical properties of human face, our work takes the advantage of the existence of even half of the face. The strategy is to maximize the linearity relationship based on the local information of the face rather than on the global information. To establish the relationship, our proposed method employs discrete wavelet transform and multi-color uniform local binary pattern (ULBP) in order to obtain features for the local information. The local information will then be represented by a single vector known as the face feature vector. This face feature vector will be used to estimate the frontal face feature vector which will be used for matching with the actual vector. With such an approach, our proposed method relies on a database that contains only single frontal face images. The results shown in this paper demonstrate the robustness of our proposed method even at low-resolution conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hailun Liu ◽  
Dongmei Sun ◽  
Ke Xiong ◽  
Zhengding Qiu

Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.


Cloud is that the rising and thirst area of analysis and advantageous in all the fields. However security is the main disquiet for not espouse cloud for each application. Mainly of the security crisis are connected by authentication with data protection by the respect to cloud security alliance (CSA). The projected New (Biometric encoding and Biometric authentication) protocol can conquer every safety crisis in cloud adjacent. In NEW protocol biometric encryption has been provided for the cloud consumer’s valuable information and identity verification has been utilized in a unique way to scale back the problems associated with authentication and authorization. In NEW protocol Identity verification in cloud environment has been joint by pattern security in coincidence with four entirely dissimilar and influential encryption algorithms for accumulated safety. This protocol improves biometric template protection by the combination of RSA and AES encryption algorithms in proper locations and 3DES, Blowfish has been utilized in information security and solution safety supervision. By implementing such technique can vanish out the un trustiness of adopting cloud, specifically public and hybrid clouds. Since all the users information are hold on in off premise. Adopting this protocol has given nice results when examining with existing work and all the vulnerable places has been considered for improved security.


2020 ◽  
Vol 38 (3B) ◽  
pp. 98-103
Author(s):  
Atyaf S. Hamad ◽  
Alaa K. Farhan

This research presents a method of image encryption that has been designed based on the algorithm of complete shuffling, transformation of substitution box, and predicated image crypto-system. This proposed algorithm presents extra confusion in the first phase because of including an S-box based on using substitution by AES algorithm in encryption and its inverse in Decryption. In the second phase, shifting and rotation were used based on secrete key in each channel depending on the result from the chaotic map, 2D logistic map and the output was processed and used for the encryption algorithm. It is known from earlier studies that simple encryption of images based on the scheme of shuffling is insecure in the face of chosen cipher text attacks. Later, an extended algorithm has been projected. This algorithm performs well against chosen cipher text attacks. In addition, the proposed approach was analyzed for NPCR, UACI (Unified Average Changing Intensity), and Entropy analysis for determining its strength.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 910
Author(s):  
Tong-Yuen Chai ◽  
Bok-Min Goi ◽  
Wun-She Yap

Biometric template protection (BTP) schemes are implemented to increase public confidence in biometric systems regarding data privacy and security in recent years. The introduction of BTP has naturally incurred loss of information for security, which leads to performance degradation at the matching stage. Although efforts are shown in the extended work of some iris BTP schemes to improve their recognition performance, there is still a lack of a generalized solution for this problem. In this paper, a trainable approach that requires no further modification on the protected iris biometric templates has been proposed. This approach consists of two strategies to generate a confidence matrix to reduce the performance degradation of iris BTP schemes. The proposed binary confidence matrix showed better performance in noisy iris data, whereas the probability confidence matrix showed better performance in iris databases with better image quality. In addition, our proposed scheme has also taken into consideration the potential effects in recognition performance, which are caused by the database-associated noise masks and the variation in biometric data types produced by different iris BTP schemes. The proposed scheme has reported remarkable improvement in our experiments with various publicly available iris research databases being tested.


2021 ◽  
pp. 1-11
Author(s):  
Suphawimon Phawinee ◽  
Jing-Fang Cai ◽  
Zhe-Yu Guo ◽  
Hao-Ze Zheng ◽  
Guan-Chen Chen

Internet of Things is considerably increasing the levels of convenience at homes. The smart door lock is an entry product for smart homes. This work used Raspberry Pi, because of its low cost, as the main control board to apply face recognition technology to a door lock. The installation of the control sensing module with the GPIO expansion function of Raspberry Pi also improved the antitheft mechanism of the door lock. For ease of use, a mobile application (hereafter, app) was developed for users to upload their face images for processing. The app sends the images to Firebase and then the program downloads the images and captures the face as a training set. The face detection system was designed on the basis of machine learning and equipped with a Haar built-in OpenCV graphics recognition program. The system used four training methods: convolutional neural network, VGG-16, VGG-19, and ResNet50. After the training process, the program could recognize the user’s face to open the door lock. A prototype was constructed that could control the door lock and the antitheft system and stream real-time images from the camera to the app.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takao Fukui ◽  
Mrinmoy Chakrabarty ◽  
Misako Sano ◽  
Ari Tanaka ◽  
Mayuko Suzuki ◽  
...  

AbstractEye movements toward sequentially presented face images with or without gaze cues were recorded to investigate whether those with ASD, in comparison to their typically developing (TD) peers, could prospectively perform the task according to gaze cues. Line-drawn face images were sequentially presented for one second each on a laptop PC display, and the face images shifted from side-to-side and up-and-down. In the gaze cue condition, the gaze of the face image was directed to the position where the next face would be presented. Although the participants with ASD looked less at the eye area of the face image than their TD peers, they could perform comparable smooth gaze shift to the gaze cue of the face image in the gaze cue condition. This appropriate gaze shift in the ASD group was more evident in the second half of trials in than in the first half, as revealed by the mean proportion of fixation time in the eye area to valid gaze data in the early phase (during face image presentation) and the time to first fixation on the eye area. These results suggest that individuals with ASD may benefit from the short-period trial experiment by enhancing the usage of gaze cue.


Sign in / Sign up

Export Citation Format

Share Document