Crack Detection Of Concrete Surface Based On \Newline Convolutional Neural Networks

Author(s):  
GANG YAO ◽  
FU-JIA WEI ◽  
JI-YE QIAN ◽  
ZHAO-GUO WU
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3042 ◽  
Author(s):  
Yundong Li ◽  
Hongguang Li ◽  
Hongren Wang

Robotic vision-based crack detection in concrete bridges is an essential task to preserve these assets and their safety. The conventional human visual inspection method is time consuming and cost inefficient. In this paper, we propose a robust algorithm to detect cracks in a pixel-wise manner from real concrete surface images. In practice, crack detection remains challenging in the following aspects: (1) detection performance is disturbed by noises and clutters of environment; and (2) the requirement of high pixel-wise accuracy is difficult to obtain. To address these limitations, three steps are considered in the proposed scheme. First, a local pattern predictor (LPP) is constructed using convolutional neural networks (CNN), which can extract discriminative features of images. Second, each pixel is efficiently classified into crack categories or non-crack categories by LPP, using as context a patch centered on the pixel. Lastly, the output of CNN—i.e., confidence map—is post-processed to obtain the crack areas. We evaluate the proposed algorithm on samples captured from several concrete bridges. The experimental results demonstrate the good performance of the proposed method.


2021 ◽  
Vol 11 (11) ◽  
pp. 5074
Author(s):  
Haotian Li ◽  
Zhuang Yue ◽  
Jingyu Liu ◽  
Yi Wang ◽  
Huaiyu Cai ◽  
...  

Cracks are one of the most serious defects that threaten the safety of bridges. In order to detect different forms of cracks in different collection environments quickly and accurately, we proposed a pixel-level crack segmentation network based on convolutional neural networks, which is called the Skip Connected Crack Detection Network (SCCDNet). The network is composed of three parts: the Encoder module with 13 convolutional layers pretrained in the VGG-16 network, the Decoder module with a densely connected structure, and the Skip-Squeeze-and-Excitation (SSE) module which connects the feature map shaving the same resolution in the Encoder and Decoder. We used depthwise separable convolution to improve the accuracy of crack segmentation while reducing the complexity of the model. In this paper, a dataset containing cracks collected in different scenes was established, and SCCDNet was trained and tested on this dataset. Compared with the advanced models, SCCDNet obtained the best crack segmentation performance, while F-score reached 0.7763.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2021 ◽  
Author(s):  
Ronghua Fu ◽  
Hao Xu ◽  
Zijian Wang ◽  
Lei Shen ◽  
Maosen Cao ◽  
...  

Crack identification plays an essential role in the health diagnosis of various concrete structures. Among different intelligent algorithms, the convolutional neural networks (CNNs) has been demonstrated as a promising tool capable of efficiently identifying the existence and evolution of concrete cracks by adaptively recognizing crack features from a large amount of concrete surface images. However, the accuracy as well as the versatility of conventional CNNs in crack identification is largely limited, due to the influence of noise contained in the background of the concrete surface images. The noise originates from highly diverse sources, such as light spots, blurs, surface roughness/wear/stains. With the aim of enhancing the accuracy, noise immunity, and versatility of CNN-based crack identification methods, a framework of enhanced intelligent identification of concrete cracks is established in this study, based on a hybrid utilization of conventional CNNs with a multi-layered image preprocessing strategy (MLP), of which the key components are homomorphic filtering and the Otsu thresholding method. Relying on the comparison and fine-tuning of classic CNN structures, networks for detection of crack position and identification of crack type are built, trained, and tested, based on a dataset composed of a large number of concrete crack images. The effectiveness and efficiency of the proposed framework involving the MLP and the CNN in crack identification are examined by comparative studies, with and without the implementation of the MLP strategy. Crack identification accuracy subject to different sources and levels of noise influence is investigated.


Sign in / Sign up

Export Citation Format

Share Document