Multiclass Classification of Modulation Formats in the presence of Rayleigh and Rician Channel Noise using Deep Learning Methods

Author(s):  
Rahim Khan ◽  
Yang Qiang ◽  
Ahsan Bin Tufail ◽  
Alam Noor
2020 ◽  
pp. 102952
Author(s):  
Atieh Khodadadi ◽  
Soheila Molaei ◽  
Mehdi Teimouri ◽  
Hadi Zare

2018 ◽  
Vol 136 (11) ◽  
pp. 1305 ◽  
Author(s):  
Phillippe Burlina ◽  
Neil Joshi ◽  
Katia D. Pacheco ◽  
David E. Freund ◽  
Jun Kong ◽  
...  

2019 ◽  
Vol 30 (1) ◽  
pp. 9-26 ◽  
Author(s):  
Oscar Julian Perdomo Charry ◽  
Fabio Augusto González Osorio

Artificial intelligence is having an important effect on different areas of medicine, and ophthalmology has not been the exception. In particular, deep learning methods have been applied successfully to the detection of clinical signs and the classification of ocular diseases. This represents a great potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning methods have primarily been applied to eye fundus images and optical coherence tomography. On the one hand, these methods have achieved an outstanding performance in the detection of ocular diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related macular degeneration.  On the other hand, several worldwide challenges have shared big eye imaging datasets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed by experts. In addition, these methods are breaking the stigma of black-box models, with the delivering of interpretable clinically information. This review provides an overview of the state-of-the-art deep learning methods used in ophthalmic images, databases and potential challenges for ocular diagnosis


2021 ◽  
Vol 2070 (1) ◽  
pp. 012141
Author(s):  
Pavan Sharma ◽  
Hemant Amhia ◽  
Sunil Datt Sharma

Abstract Nowadays, artificial intelligence techniques are getting popular in modern industry to diagnose the rolling bearing faults (RBFs). The RBFs occur in rotating machinery and these are common in every manufacturing industry. The diagnosis of the RBFs is highly needed to reduce the financial and production losses. Therefore, various artificial intelligence techniques such as machine and deep learning have been developed to diagnose the RBFs in the rotating machines. But, the performance of these techniques has suffered due the size of the dataset. Because, Machine learning and deep learning methods based methods are suitable for the small and large datasets respectively. Deep learning methods have also been limited to large training time. In this paper, performance of the different pre-trained models for the RBFs classification has been analysed. CWRU Dataset has been used for the performance comparison.


2020 ◽  
Vol 181 ◽  
pp. 109728
Author(s):  
Karl Pazdernik ◽  
Nicole L. LaHaye ◽  
Conor M. Artman ◽  
Yuanyuan Zhu

Sign in / Sign up

Export Citation Format

Share Document