scholarly journals Utility of Deep Learning Methods for Referability Classification of Age-Related Macular Degeneration

2018 ◽  
Vol 136 (11) ◽  
pp. 1305 ◽  
Author(s):  
Phillippe Burlina ◽  
Neil Joshi ◽  
Katia D. Pacheco ◽  
David E. Freund ◽  
Jun Kong ◽  
...  
2019 ◽  
Vol 30 (1) ◽  
pp. 9-26 ◽  
Author(s):  
Oscar Julian Perdomo Charry ◽  
Fabio Augusto González Osorio

Artificial intelligence is having an important effect on different areas of medicine, and ophthalmology has not been the exception. In particular, deep learning methods have been applied successfully to the detection of clinical signs and the classification of ocular diseases. This represents a great potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning methods have primarily been applied to eye fundus images and optical coherence tomography. On the one hand, these methods have achieved an outstanding performance in the detection of ocular diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related macular degeneration.  On the other hand, several worldwide challenges have shared big eye imaging datasets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed by experts. In addition, these methods are breaking the stigma of black-box models, with the delivering of interpretable clinically information. This review provides an overview of the state-of-the-art deep learning methods used in ophthalmic images, databases and potential challenges for ocular diagnosis


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3637-3640

Retinal vessels ID means to isolate the distinctive retinal configuration issues, either wide or restricted from fundus picture foundation, for example, optic circle, macula, and unusual sores. Retinal vessels recognizable proof investigations are drawing in increasingly more consideration today because of pivotal data contained in structure which is helpful for the identification and analysis of an assortment of retinal pathologies included yet not restricted to: Diabetic Retinopathy (DR), glaucoma, hypertension, and Age-related Macular Degeneration (AMD). With the advancement of right around two decades, the inventive methodologies applying PC supported systems for portioning retinal vessels winding up increasingly significant and coming nearer. Various kinds of retinal vessels segmentation strategies discussed by using Deep Learning methods. At that point, the pre-processing activities and the best in class strategies for retinal vessels distinguishing proof are presented.


Diagnostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 261
Author(s):  
Tae-Young Heo ◽  
Kyoung Min Kim ◽  
Hyun Kyu Min ◽  
Sun Mi Gu ◽  
Jae Hyun Kim ◽  
...  

The use of deep-learning-based artificial intelligence (AI) is emerging in ophthalmology, with AI-mediated differential diagnosis of neovascular age-related macular degeneration (AMD) and dry AMD a promising methodology for precise treatment strategies and prognosis. Here, we developed deep learning algorithms and predicted diseases using 399 images of fundus. Based on feature extraction and classification with fully connected layers, we applied the Visual Geometry Group with 16 layers (VGG16) model of convolutional neural networks to classify new images. Image-data augmentation in our model was performed using Keras ImageDataGenerator, and the leave-one-out procedure was used for model cross-validation. The prediction and validation results obtained using the AI AMD diagnosis model showed relevant performance and suitability as well as better diagnostic accuracy than manual review by first-year residents. These results suggest the efficacy of this tool for early differential diagnosis of AMD in situations involving shortages of ophthalmology specialists and other medical devices.


Sign in / Sign up

Export Citation Format

Share Document