Shortest paths in stochastic networks

Author(s):  
B. Lloyd-Smith ◽  
A.A. Kist ◽  
R.J. Harris ◽  
N. Shrestha
1989 ◽  
Vol 3 (3) ◽  
pp. 435-451
Author(s):  
Bajis Dodin

Given a stochastic activity network in which the length of some or all of the arcs are random variables with known probability distributions. This paper concentrates on identifying the shortest path and the M shortest paths in the network and on using the M paths to identify surrogate stochastic networks which are amenable for deriving analytical solutions. First, it identifies the M shortest paths using a certain form of stochastic dominance. Second, it identifies the M shortest paths by applying the deterministic methods to the network resulting from replacing the random length of every arc by its mean value. The two sets of the M paths are compared with those obtained by Monte Carlo sampling. Finally, the paper investigates how the distributional properties of the shortest path in the surrogate network compare with those of the shortest path in the original stochastic network.


Networks ◽  
1993 ◽  
Vol 23 (3) ◽  
pp. 175-183 ◽  
Author(s):  
Gehan A. Corea ◽  
Vidyadhar G. Kulkarni

2005 ◽  
Vol 49 (9-10) ◽  
pp. 1549-1564 ◽  
Author(s):  
Y.Y. Fan ◽  
R.E. Kalaba ◽  
J.E. Moore

2019 ◽  
Author(s):  
Ruslan N. Tazhigulov ◽  
James R. Gayvert ◽  
Melissa Wei ◽  
Ksenia B. Bravaya

<p>eMap is a web-based platform for identifying and visualizing electron or hole transfer pathways in proteins based on their crystal structures. The underlying model can be viewed as a coarse-grained version of the Pathways model, where each tunneling step between hopping sites represented by electron transfer active (ETA) moieties is described with one effective decay parameter that describes protein-mediated tunneling. ETA moieties include aromatic amino acid residue side chains and aromatic fragments of cofactors that are automatically detected, and, in addition, electron/hole residing sites that can be specified by the users. The software searches for the shortest paths connecting the user-specified electron/hole source to either all surface-exposed ETA residues or to the user-specified target. The identified pathways are ranked based on their length. The pathways are visualized in 2D as a graph, in which each node represents an ETA site, and in 3D using available protein visualization tools. Here, we present the capability and user interface of eMap 1.0, which is available at https://emap.bu.edu.</p>


Author(s):  
Mark Newman

This chapter introduces some of the fundamental concepts of numerical network calculations. The chapter starts with a discussion of basic concepts of computational complexity and data structures for storing network data, then progresses to the description and analysis of algorithms for a range of network calculations: breadth-first search and its use for calculating shortest paths, shortest distances, components, closeness, and betweenness; Dijkstra's algorithm for shortest paths and distances on weighted networks; and the augmenting path algorithm for calculating maximum flows, minimum cut sets, and independent paths in networks.


2001 ◽  
Vol 110 (2-3) ◽  
pp. 151-167 ◽  
Author(s):  
Danny Z. Chen ◽  
Gautam Das ◽  
Michiel Smid

2021 ◽  
Vol 52 (2) ◽  
pp. 121-132
Author(s):  
Richard Goldstone ◽  
Rachel Roca ◽  
Robert Suzzi Valli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document