A primal-dual neural network for kinematic control of redundant manipulators subject to joint velocity constraints

Author(s):  
S.W.S. Tang ◽  
Jun Wang
Robotica ◽  
2009 ◽  
Vol 28 (4) ◽  
pp. 525-537 ◽  
Author(s):  
Yunong Zhang ◽  
Kene Li

SUMMARYIn this paper, to diminish discontinuity points arising in the infinity-norm velocity minimization scheme, a bi-criteria velocity minimization scheme is presented based on a new neural network solver, i.e., an LVI-based primal-dual neural network. Such a kinematic planning scheme of redundant manipulators can incorporate joint physical limits, such as, joint limits and joint velocity limits simultaneously. Moreover, the presented kinematic planning scheme can be reformulated as a quadratic programming (QP) problem. As a real-time QP solver, the LVI-based primal-dual neural network is developed with a simple piecewise linear structure and high computational efficiency. Computer simulations performed based on a PUMA560 manipulator model are presented to illustrate the validity and advantages of such a bi-criteria velocity minimization neural planning scheme for redundant robot arms.


Robotica ◽  
2019 ◽  
Vol 38 (6) ◽  
pp. 983-999
Author(s):  
Zhaoli Jia ◽  
Siyuan Chen ◽  
Zhijun Zhang ◽  
Nan Zhong ◽  
Pengchao Zhang ◽  
...  

SUMMARYIn order to solve joint-angle drift problem of dual redundant manipulators at acceleration-level, an acceleration-level tri-criteria optimization motion planning (ALTC-OMP) scheme is proposed, which combines the minimum acceleration norm, repetitive motion planning, and infinity-norm acceleration minimization solutions via weighting factor. This scheme can resolve the joint-angle drift problem of dual redundant manipulators which will arise in single criteria or bi-criteria scheme. In addition, the proposed scheme considers joint-velocity joint-acceleration physical limits. The proposed scheme can not only guarantee joint-velocity and joint-acceleration within their physical limits, but also ensure that final joint-velocity and joint-acceleration are near to zero. This scheme is realized by dual redundant manipulators which consist of left and right manipulators. In order to ensure the coordinated operation of manipulators, two motion planning problems are reformulated as two general quadratic program (QP) problems and further unified into one standard QP problem, which is solved by a simplified linear-variational-inequalities-based primal-dual neural network at the acceleration-level. Computer-simulation results based on dual PUMA560 redundant manipulators further demonstrate the effectiveness and feasibility of the proposed ALTC-OMP scheme to resolve joint-angle drift problem arising in the dual redundant manipulators.


Robotica ◽  
1992 ◽  
Vol 10 (3) ◽  
pp. 255-262 ◽  
Author(s):  
W. J. Chung ◽  
W. K. Chung ◽  
Y. Youm

SUMMARYThe kinematic control of a planar manipulator with several-degrees of redundancy has been a difficult problem because of the heavy computational burden and/or lack of appropriate techniques. The extended motion distribution scheme, which is based on decomposing a planar redundant manipulator into a series of nonredundant/redundant local arms (referred to as subarms) and distributing the motion of an end-effector to subarms at the joint velocity level, is proposed in this paper. The configuration index, which is defined as the product of minors corresponding to subarms in the Jacobian matrix, is used to globally guide the redundant manipulators. To enhance the performance of the proposed scheme, a self-motion control, which handles the internal joint motion that does not contribute to the end-effector motion, can be used optionally to guarantee globally optimal manipulation. The repeatability problem for the redundant manipulators is discussed using the proposed scheme. The results of computer simulations are shown and analyzed in detail for planar 8-DOF and 9-DOF manipulators, as examples.


Sign in / Sign up

Export Citation Format

Share Document