infinity norm
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 33)

H-INDEX

18
(FIVE YEARS 3)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 186
Author(s):  
Yating Li ◽  
Yaqiang Wang

Based on the Schur complement, some upper bounds for the infinity norm of the inverse of generalized doubly strictly diagonally dominant matrices are obtained. In addition, it is shown that the new bound improves the previous bounds. Numerical examples are given to illustrate our results. By using the infinity norm bound, a lower bound for the smallest singular value is given.


Author(s):  
Lei Yang ◽  
Xiaojun Chen ◽  
Shuhuang Xiang

In this paper, we consider a well-known sparse optimization problem that aims to find a sparse solution of a possibly noisy underdetermined system of linear equations. Mathematically, it can be modeled in a unified manner by minimizing [Formula: see text] subject to [Formula: see text] for given [Formula: see text] and [Formula: see text]. We then study various properties of the optimal solutions of this problem. Specifically, without any condition on the matrix A, we provide upper bounds in cardinality and infinity norm for the optimal solutions and show that all optimal solutions must be on the boundary of the feasible set when [Formula: see text]. Moreover, for [Formula: see text], we show that the problem with [Formula: see text] has a finite number of optimal solutions and prove that there exists [Formula: see text] such that the solution set of the problem with any [Formula: see text] is contained in the solution set of the problem with p = 0, and there further exists [Formula: see text] such that the solution set of the problem with any [Formula: see text] remains unchanged. An estimation of such [Formula: see text] is also provided. In addition, to solve the constrained nonconvex non-Lipschitz Lp-L1 problem ([Formula: see text] and q = 1), we propose a smoothing penalty method and show that, under some mild conditions, any cluster point of the sequence generated is a stationary point of our problem. Some numerical examples are given to implicitly illustrate the theoretical results and show the efficiency of the proposed algorithm for the constrained Lp-L1 problem under different noises.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042002
Author(s):  
Yuewu Shi ◽  
Wei Wang ◽  
Zhizhen Zhu ◽  
Xin Nie

Abstract This paper presents an estimation method of double exponential pulse (DEP) between the physical parameters rise time (t r), full width at half maximum amplitude (t FWHM) and the mathematical parameters α, β. A newly fitting method based on the least infinity norm criterion is proposed to deal with the estimation problem of DEP. The calculation process and equation of parameters of this method is proposed based on an m-th-order polynomial fitting model. This estimation method is compared with the least square method by the same data and fitting function. The results show that the maximum estimation error of parameters of double exponential pulse obtained by the least infinity norm method is 1.5 %.


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Alexander A. Sherstov

AbstractWe study the approximation of halfspaces $$h:\{0,1\}^n\to\{0,1\}$$ h : { 0 , 1 } n → { 0 , 1 } in the infinity norm by polynomials and rational functions of any given degree. Our main result is an explicit construction of the “hardest” halfspace, for which we prove polynomial and rational approximation lower bounds that match the trivial upper bounds achievable for all halfspaces. This completes a lengthy line of work started by Myhill and Kautz (1961). As an application, we construct a communication problem that achieves essentially the largest possible separation, of O(n) versus $$2^{-\Omega(n)}$$ 2 - Ω ( n ) , between the sign-rank and discrepancy. Equivalently, our problem exhibits a gap of log n versus $$\Omega(n)$$ Ω ( n ) between the communication complexity with unbounded versus weakly unbounded error, improving quadratically on previous constructions and completing a line of work started by Babai, Frankl, and Simon (FOCS 1986). Our results further generalize to the k-party number-on-the-forehead model, where we obtain an explicit separation of log n versus $$\Omega(n/4^{n})$$ Ω ( n / 4 n ) for communication with unbounded versus weakly unbounded error.


Author(s):  
Shahriar Shahabuddin ◽  
Ilkka Hautala ◽  
Markku Juntti ◽  
Christoph Studer

Author(s):  
Álinson S. Xavier ◽  
Ricardo Fukasawa ◽  
Laurent Poirrier

When generating multirow intersection cuts for mixed-integer linear optimization problems, an important practical question is deciding which intersection cuts to use. Even when restricted to cuts that are facet defining for the corner relaxation, the number of potential candidates is still very large, especially for instances of large size. In this paper, we introduce a subset of intersection cuts based on the infinity norm that is very small, works for relaxations having arbitrary number of rows and, unlike many subclasses studied in the literature, takes into account the entire data from the simplex tableau. We describe an algorithm for generating these inequalities and run extensive computational experiments in order to evaluate their practical effectiveness in real-world instances. We conclude that this subset of inequalities yields, in terms of gap closure, around 50% of the benefits of using all valid inequalities for the corner relaxation simultaneously, but at a small fraction of the computational cost, and with a very small number of cuts. Summary of Contribution: Cutting planes are one of the most important techniques used by modern mixed-integer linear programming solvers when solving a variety of challenging operations research problems. The paper advances the state of the art on general-purpose multirow intersection cuts by proposing a practical and computationally friendly method to generate them.


2021 ◽  
Vol 6 (10) ◽  
pp. 10846-10860
Author(s):  
Xinnian Song ◽  
◽  
Lei Gao

<abstract><p>In this paper, we introduce a new subclass of $ P $-matrices called Cvetković-Kostić-Varga type $ B $-matrices (CKV-type $ B $-matrices), which contains DZ-type-$ B $-matrices as a special case, and present an infinity norm bound for the inverse of CKV-type $ B $-matrices. Based on this bound, we also give an error bound for linear complementarity problems of CKV-type $ B $-matrices. It is proved that the new error bound is better than that provided by Li et al. <sup>[<xref ref-type="bibr" rid="b24">24</xref>]</sup> for DZ-type-$ B $-matrices, and than that provided by M. García-Esnaola and J.M. Peña <sup>[<xref ref-type="bibr" rid="b10">10</xref>]</sup> for $ B $-matrices in some cases. Numerical examples demonstrate the effectiveness of the obtained results.</p></abstract>


2021 ◽  
Vol 7 (2) ◽  
pp. 1896-1906
Author(s):  
Deshu Sun ◽  

<abstract><p>Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant $ M $-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a $ B^S $-matrix. Theory analysis and numerical examples show that these upper bounds are more accurate than some existing results.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document