scholarly journals Distributed algorithms for building Hamiltonian cycles in k-ary n-cubes and hypercubes with faulty links

Author(s):  
I.A. Stewart
2007 ◽  
Vol 08 (03) ◽  
pp. 253-284 ◽  
Author(s):  
IAIN A. STEWART

We derive a sequential algorithm Find-Ham-Cycle with the following property. On input: k and n (specifying the k-ary n-cube [Formula: see text]); F, a set of at most 2n − 2 faulty links; and v , a node of [Formula: see text], the algorithm outputs nodes v + and v − such that if Find-Ham-Cycle is executed once for every node v of [Formula: see text] then the node v + (resp. v −) denotes the successor (resp. predecessor) node of v on a fixed Hamiltonian cycle in [Formula: see text] in which no link is in F. Moreover, the algorithm Find-Ham-Cycle runs in time polynomial in n and log k. We also obtain a similar algorithm for an n-dimensional hypercube with at most n − 2 faulty links. We use our algorithms to obtain distributed algorithms to embed Hamiltonian cycles k-ary n-cubes and hypercubes with faulty links; our hypercube algorithm improves on a recently-derived algorithm due to Leu and Kuo, and our k-ary n-cube algorithm is the first distributed algorithm for embedding a Hamiltonian cycle in a k-ary n-cube with faulty links.


2002 ◽  
Author(s):  
David Meyer ◽  
Jeffrey Remmel

2006 ◽  
Author(s):  
V. S. Subrahmanian ◽  
Larry Davis ◽  
James Reggia ◽  
Victor Basili ◽  
John Aloimonos

2020 ◽  
Vol 70 (2) ◽  
pp. 497-503
Author(s):  
Dipendu Maity ◽  
Ashish Kumar Upadhyay

Abstract If the face-cycles at all the vertices in a map are of same type then the map is said to be a semi-equivelar map. There are eleven types of semi-equivelar maps on the torus. In 1972 Altshuler has presented a study of Hamiltonian cycles in semi-equivelar maps of three types {36}, {44} and {63} on the torus. In this article we study Hamiltonicity of semi-equivelar maps of the other eight types {33, 42}, {32, 41, 31, 41}, {31, 61, 31, 61}, {34, 61}, {41, 82}, {31, 122}, {41, 61, 121} and {31, 41, 61, 41} on the torus. This gives a partial solution to the well known Conjecture that every 4-connected graph on the torus has a Hamiltonian cycle.


Sign in / Sign up

Export Citation Format

Share Document