Real-Time Distributed Algorithms for Visual and Battlefield Reasoning

2006 ◽  
Author(s):  
V. S. Subrahmanian ◽  
Larry Davis ◽  
James Reggia ◽  
Victor Basili ◽  
John Aloimonos
2019 ◽  
Vol 72 (5) ◽  
pp. 1159-1178
Author(s):  
Panpan Huang ◽  
Chris Rizos ◽  
Craig Roberts

Airborne-Pseudolite (A-PL) systems have been proposed to augment Global Navigation Satellite Systems (GNSSs) in difficult areas where GNSS-only navigation cannot be guaranteed due to signal blockages, signal jamming, etc. One of the challenges in realising such a system is to determine the coordinates of the A-PLs to a high accuracy. The GNSS Precise Point Positioning (PPP) technique is a possible alternative to differential GNSS techniques such as those that generate Real-Time Kinematic (RTK) solutions. To enhance the A-PL positioning performance in GNSS challenged areas, it is assumed that inter-PL range measurements are also used in addition to GNSS measurements. When processing these new measurements, cross-correlations among A-PL estimated states introduced during measurement updates need to be accounted for so as to obtain consistent estimated states. In this paper, a distributed algorithm based on a Split Covariance Intersection Filter (SCIF) is proposed. Three commonly used means of implementing the SCIF algorithm are analysed. Another challenge is that real-time GNSS PPP relies on the use of precise satellite orbit and clock information. One problem is that these real-time orbit and satellite clock error corrections may not be always available, especially for moving A-PLs in challenging environments when signal outages occur. To maintain A-PL positioning accuracy using GNSS PPP, it is necessary to predict these error corrections during outages. Different prediction models for orbit and clock error corrections are discussed. A test was conducted to evaluate the A-PL positioning based on GNSS PPP and inter-PL ranges, as well as the performance of error prediction modelling. It was found that GNSS PPP combined with inter-PL ranges could achieve better converged positioning accuracy and a reduction in convergence time of GNSS PPP. However, the performance of GNSS PPP with inter-PL ranges was degraded by observing A-PLs with limited positioning accuracy. Although the performance improvement achieved by the SCIF-based distributed algorithms was smaller than that by the centralised algorithm, greater robustness in dealing with deteriorated observed A-PLs' trajectory data was demonstrated by the distributed algorithms. In addition, short-term prediction models were analysed, and their performance was shown to reduce the effect of error correction outages on A-PL positioning accuracy.


Author(s):  
Yuejiang Liu ◽  
Jean-Hubert Hours ◽  
Giorgos Stathopoulos ◽  
Colin N. Jones

1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Sign in / Sign up

Export Citation Format

Share Document