Using Segmentation to Enhance Frame Prediction in a Multi-Scale Spatial-Temporal Feature Extraction Network

Author(s):  
Michael Mu-Chien Hsu ◽  
Richard Jui-Chun Shyur
2015 ◽  
Vol 4 (4) ◽  
pp. 1870-1893 ◽  
Author(s):  
Wen Luo ◽  
Zhao-Yuan Yu ◽  
Sheng-Jun Xiao ◽  
A-Xing Zhu ◽  
Lin-Wang Yuan

Author(s):  
Jianing Li ◽  
Shiliang Zhang ◽  
Tiejun Huang

This paper proposes a two-stream convolution network to extract spatial and temporal cues for video based person ReIdentification (ReID). A temporal stream in this network is constructed by inserting several Multi-scale 3D (M3D) convolution layers into a 2D CNN network. The resulting M3D convolution network introduces a fraction of parameters into the 2D CNN, but gains the ability of multi-scale temporal feature learning. With this compact architecture, M3D convolution network is also more efficient and easier to optimize than existing 3D convolution networks. The temporal stream further involves Residual Attention Layers (RAL) to refine the temporal features. By jointly learning spatial-temporal attention masks in a residual manner, RAL identifies the discriminative spatial regions and temporal cues. The other stream in our network is implemented with a 2D CNN for spatial feature extraction. The spatial and temporal features from two streams are finally fused for the video based person ReID. Evaluations on three widely used benchmarks datasets, i.e.,MARS, PRID2011, and iLIDS-VID demonstrate the substantial advantages of our method over existing 3D convolution networks and state-of-art methods.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Yi Wang ◽  
Xiao Song ◽  
Guanghong Gong ◽  
Ni Li

Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance.


2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Daobin Huang ◽  
Minghui Wang ◽  
Ling Zhang ◽  
Haichun Li ◽  
Minquan Ye ◽  
...  

Abstract Background Accurately segment the tumor region of MRI images is important for brain tumor diagnosis and radiotherapy planning. At present, manual segmentation is wildly adopted in clinical and there is a strong need for an automatic and objective system to alleviate the workload of radiologists. Methods We propose a parallel multi-scale feature fusing architecture to generate rich feature representation for accurate brain tumor segmentation. It comprises two parts: (1) Feature Extraction Network (FEN) for brain tumor feature extraction at different levels and (2) Multi-scale Feature Fusing Network (MSFFN) for merge all different scale features in a parallel manner. In addition, we use two hybrid loss functions to optimize the proposed network for the class imbalance issue. Results We validate our method on BRATS 2015, with 0.86, 0.73 and 0.61 in Dice for the three tumor regions (complete, core and enhancing), and the model parameter size is only 6.3 MB. Without any post-processing operations, our method still outperforms published state-of-the-arts methods on the segmentation results of complete tumor regions and obtains competitive performance in another two regions. Conclusions The proposed parallel structure can effectively fuse multi-level features to generate rich feature representation for high-resolution results. Moreover, the hybrid loss functions can alleviate the class imbalance issue and guide the training process. The proposed method can be used in other medical segmentation tasks.


Sign in / Sign up

Export Citation Format

Share Document