Study on an accurate iron loss calculation method considering the non-uniformity of the magnetic flux density

Author(s):  
Hiroaki. Sato ◽  
Toshihisa. Shimizu
Materia Japan ◽  
2014 ◽  
Vol 53 (3) ◽  
pp. 110-112 ◽  
Author(s):  
Tatsuhiko Hiratani ◽  
Yoshihiko Oda ◽  
Misao Namikawa ◽  
Shouji Kasai ◽  
Hironori Ninomiya

2017 ◽  
Vol 68 (1) ◽  
Author(s):  
Mitja Breznik ◽  
Viktor Goričan ◽  
Anton Hamler ◽  
Selma Čorović ◽  
Damijan Miljavec

AbstractThis paper presents magnetic flux density behaviour in laminated electrical sheets which affects the results and precision of iron losses calculation in imbedded permanent magnet (IPM) machine. Objective of the research was to analyse all the influential phenomena that were identified through iron loss models analysis, finite element method simulations and iron loss measurements. The presence of phenomena such as harmonic content and rotational magnetic fields are confirmed with finite element method analysis of concentrated and distributed winding IPM machine. A significant magnetic flux density ripple in the rotor of concentrated winding IPM machine in comparison to distributed winding IPM machine is revealed and analysed. Behaviour that affects iron loss in the rotor of synchronous machines in the absence of first order harmonic is analysed. The DC level added to alternating magnetic flux density was used in experiment to mimic magnetic behaviour on the rotor of IPM machine and further to calculate iron losses.


Author(s):  
Xiaoyan Wang ◽  
Zhiguang Cheng ◽  
Li Lin ◽  
Jianmin Wang

Purpose – The purpose of this paper is to present a simple method to analyze the iron loss in the laminated core of power and distribution transformers. Design/methodology/approach – This paper presents a practical method to calculate the no-load loss in the transformer cores. Considering the non-uniformity of the magnetic flux density in the corner areas of the Epstein frames will affect the measurement precision of the Wt-B curves then further affect the core loss calculation in FEM, a dual-Epstein frame method is used to measure the Wt-B curves with the Epstein sample stripes cutting by different angles to the rolling direction. A 2D FEM that considers the type of joints of the core and eddy current effect in the laminations is used to analyze the core loss with multi-angle Wt-B curves. Findings – The impact of lamination thickness, size of gaps and type of joint of the core are considered. Considering the no-load testing conditions, harmonics in the exciting currents are taken into account. Originality/value – Harmonic wave of magnetic flux density in the transformer core is calculated and the core loss in the joint region is calculated by the loss curve measured with dual-Epstein frame. It makes the calculation result of transformer core loss more exactly.


Author(s):  
Benedikt Schauerte ◽  
Martin Marco Nell ◽  
Tim Brimmers ◽  
Nora Leuning ◽  
Kay Hameyer

Purpose The magnetic characterization of electrical steel is typically examined by measurements under the condition of unidirectional sinusoidal flux density at different magnetization frequencies. A variety of iron loss models were developed and parametrized for these standardized unidirectional iron loss measurements. In the magnetic cross section of rotating electrical machines, the spatial magnetic flux density loci and with them the resulting iron losses vary significantly from these unidirectional cases. For a better recreation of the measured behavior extended iron loss models that consider the effects of rotational magnetization have to be developed and compared to the measured material behavior. The aim of this study is the adaptation, parametrization and validation of an iron loss model considering the spatial flux density loci is presented and validated with measurements of circular and elliptical magnetizations. Design/methodology/approach The proposed iron loss model allows the calculation and separation of the different iron loss components based on the measured iron loss for different spatial magnetization loci. The separation is performed in analogy to the conventional iron loss calculation approach designed for the recreation of the iron losses measured under unidirectional, one-dimensional measurements. The phenomenological behavior for rotating magnetization loci is considered by the formulation of the different iron loss components as a function of the maximum magnetic flux density Bm, axis ratio fAx, angle to the rolling direction (RD) θ and magnetization frequency f. Findings The proposed formulation for the calculation of rotating iron loss is able to recreate the complicated interdependencies between the different iron loss components and the respective spatial magnetic flux loci. The model can be easily implemented in the finite element analysis of rotating electrical machines, leading to good agreement between the theoretically expected behavior and the actual output of the iron loss calculation at different geometric locations in the magnetic cross section of rotating electrical machines. Originality/value Based on conventional one-dimensional iron loss separation approaches and previously performed extensions for rotational magnetization, the terms for the consideration of vectorial unidirectional, elliptical and circular flux density loci are adjusted and compared to the performed rotational measurement. The presented approach for the mathematical formulation of the iron loss model also allows the parametrization of the different iron loss components by unidirectional measurements performed in different directions to the RD on conventional one-dimensional measurement topologies such as the Epstein frames and single sheet testers.


Sign in / Sign up

Export Citation Format

Share Document