Artificial neural network predictor for induced draft fan power consumption in thermal power plants

Author(s):  
A. Sriram ◽  
P.R. Venkateswaran ◽  
Sishaj P. Simon
2021 ◽  
Vol 54 (6) ◽  
pp. 891-895
Author(s):  
Fawaz S. Abdullah ◽  
Ali N. Hamoodi ◽  
Rasha A. Mohammed

Artificial intelligence has proven its effectiveness in many industrial fields to enhance the existing functionality. Artificial intelligence and machine learning algorithms integrated with turbines can be useful in controlling important variables such as pressure, temperature, speed, and humidity. In this research, the Simulink library from MATLAB is used to build an artificial neural network. The NARMA L2 neural controller is used to generate data and for training networks. To obtain the result and compare it with the real-time power plant, data is collected. The input variables provided to the neural network have a large effect on the hidden layer and the output of the neural network. The circuit board used in this research has a DC bridge, a transformer and voltage regulators. The result comparison shows that the integration of artificial neural networks and electric circuits shows enhanced performance with high accuracy of prediction. It was observed that the ANN integration system and electric circuit design have a result deviation of less than 1%. This shows that the integration of ANN improves the performance of turbines.


Author(s):  
Taeyun Kim ◽  
Jangbom Chai ◽  
Chanwoo Lim ◽  
Ilyoung Han

Abstract Air-operated valves (AOVs) are used to control or shut off the flow in the nuclear power plants. In particular, the failure of safety-related AOV could have significant impacts on the safety of the nuclear power plants and therefore, their performances have been tested and evaluated periodically. However, the current method to evaluate the performance needs to be revised to enhance the accuracy and to identify defects of AOV independently of personal skills. This paper introduce the ANN (Artificial Neural Network) model to diagnose the performance and the condition altogether. Test facilities were designed and configured to measure the signals such as supply pressure, control pressure, actuator pressure, stem displacement and stem thrust. Tests were carried out in various conditions which simulate defects with leak/clogged pipes, the bent stem and so on. First, the physical models of an AOV are developed to describe its behavior and to parameterize the characteristics of each component for evaluating the performance. Secondly, CNN (Convolutional Neural Network) architectures are designed considering the developed physical models to make a lead to the optimal performance of ANN. To train the ANN effectively, the measured signals were divided into several regions, from each of which the features are extracted and the extracted features are combined for classifying the defects. In addition, the model can provide the parameters of maximum available thrust, which is the key factor in periodic verification of AOV with the required accuracy and classify more than 10 different kinds of defects with high accuracy.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
P. Ilamathi ◽  
V. Selladurai ◽  
K. Balamurugan

An approach to model coal combustion process to predict and minimize unburned carbon in bottom ash of a large-capacity pulverized coal-fired boiler used in thermal power plant is proposed. The unburned carbon characteristic is investigated by parametric field experiments. The effects of excess air, coal properties, boiler load, air distribution scheme, and nozzle tilt are studied. An artificial neural network (ANN) is used to model the unburned carbon in bottom ash. A genetic algorithm (GA) is employed to perform a search to determine the optimum level process parameters in ANN model which decreases the unburned carbon in bottom ash.


Sign in / Sign up

Export Citation Format

Share Document