Using stochastic syntactic analysis for extracting a logical structure from a document image

Author(s):  
Y. Tateisi ◽  
N. Itoh
2011 ◽  
pp. 176-197
Author(s):  
Donato Malerba ◽  
Margherita Berardi ◽  
Michelangelo Ceci

This chapter introduces a data mining method for the discovery of association rules from images of scanned paper documents. It argues that a document image is a multi-modal unit of analysis whose semantics is deduced from a combination of both the textual content and the layout structure and the logical structure. Therefore, it proposes a method where both the spatial information derived from a complex document image analysis process (layout analysis), and the information extracted from the logical structure of the document (document image classification and understanding) and the textual information extracted by means of an OCR, are simultaneously considered to generate interesting patterns. The proposed method is based on an inductive logic programming approach, which is argued to be the most appropriate to analyze data available in more than one modality. It contributes to show a possible evolution of the unimodal knowledge discovery scheme, according to which different types of data describing the units of analysis are dealt with through the application of some preprocessing technique that transform them into a single double entry tabular data.


1999 ◽  
Author(s):  
Bing Liu ◽  
Zao Jiang ◽  
Hong Zhao ◽  
Tobias Ostgathe

2019 ◽  
Vol 2 (3) ◽  
pp. 206-215
Author(s):  
Alesya Ishchenko ◽  
Alexandr Nesteryuk ◽  
Marina Polyakova

2020 ◽  
Vol 2020 (9) ◽  
pp. 323-1-323-8
Author(s):  
Litao Hu ◽  
Zhenhua Hu ◽  
Peter Bauer ◽  
Todd J. Harris ◽  
Jan P. Allebach

Image quality assessment has been a very active research area in the field of image processing, and there have been numerous methods proposed. However, most of the existing methods focus on digital images that only or mainly contain pictures or photos taken by digital cameras. Traditional approaches evaluate an input image as a whole and try to estimate a quality score for the image, in order to give viewers an idea of how “good” the image looks. In this paper, we mainly focus on the quality evaluation of contents of symbols like texts, bar-codes, QR-codes, lines, and hand-writings in target images. Estimating a quality score for this kind of information can be based on whether or not it is readable by a human, or recognizable by a decoder. Moreover, we mainly study the viewing quality of the scanned document of a printed image. For this purpose, we propose a novel image quality assessment algorithm that is able to determine the readability of a scanned document or regions in a scanned document. Experimental results on some testing images demonstrate the effectiveness of our method.


2020 ◽  
Vol 64 (3) ◽  
pp. 30401-1-30401-14 ◽  
Author(s):  
Chih-Hsien Hsia ◽  
Ting-Yu Lin ◽  
Jen-Shiun Chiang

Abstract In recent years, the preservation of handwritten historical documents and scripts archived by digitized images has been gradually emphasized. However, the selection of different thicknesses of the paper for printing or writing is likely to make the content of the back page seep into the front page. In order to solve this, a cost-efficient document image system is proposed. In this system, the authors use Adaptive Directional Lifting-Based Discrete Wavelet Transform to transform image data from spatial domain to frequency domain and perform on high and low frequencies, respectively. For low frequencies, the authors use local threshold to remove most background information. For high frequencies, they use modified Least Mean Square training algorithm to produce a unique weighted mask and perform convolution on original frequency, respectively. Afterward, Inverse Adaptive Directional Lifting-Based Discrete Wavelet Transform is performed to reconstruct the four subband images to a resulting image with original size. Finally, a global binarization method, Otsu’s method, is applied to transform a gray scale image to a binary image as the output result. The results show that the difference in operation time of this work between a personal computer (PC) and Raspberry Pi is little. Therefore, the proposed cost-efficient document image system which performed on Raspberry Pi embedded platform has the same performance and obtains the same results as those performed on a PC.


Sign in / Sign up

Export Citation Format

Share Document