scholarly journals A Gaussian Process-Based Ground Segmentation for Sloped Terrains

Author(s):  
Pouria Mehrabi ◽  
Hamid D. Taghirad
2013 ◽  
Vol 76 (3-4) ◽  
pp. 563-582 ◽  
Author(s):  
Tongtong Chen ◽  
Bin Dai ◽  
Ruili Wang ◽  
Daxue Liu

2014 ◽  
Vol 664 ◽  
pp. 365-370
Author(s):  
Chao Chen ◽  
Yan Li ◽  
Wei Wang

This paper proposes a 3D point cloud registration method based on light detection and ranging (LiDAR) system. The proposed method consists of three steps: Gaussian-Process based ground segmentation, a novel k-neighbors based dynamic point feature and Iterative Closest Point (ICP) fine registration. The first two steps are the preparation of ICP fine registration. The odometry information from a GPS/IMU system is used to compensate the vehicle's ego-motion. The Gaussian-Process based ground segmentation is adopted to remove ground points. A novel Initial Localization based Dynamic Feature (ILDF) is proposed to detect and remove dynamic points. It is applicable in sequential frames and a proper initial localization without a large dislocation. In experiment results, a large number of dynamic points will be detected and removed by ILDF. The removal of dynamic points improves both accuracy and efficiency of registration algorithm.


2021 ◽  
Vol 54 (10) ◽  
pp. 437-442
Author(s):  
Xianjian Jin ◽  
Hang Yang ◽  
Zeyuan Yan ◽  
Qikang Wang

2007 ◽  
Vol 44 (02) ◽  
pp. 393-408 ◽  
Author(s):  
Allan Sly

Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show how the Hölder exponent can be estimated locally from discrete data in this model.


1987 ◽  
Vol 26 (03) ◽  
pp. 117-123
Author(s):  
P. Tautu ◽  
G. Wagner

SummaryA continuous parameter, stationary Gaussian process is introduced as a first approach to the probabilistic representation of the phenotype inheritance process. With some specific assumptions about the components of the covariance function, it may describe the temporal behaviour of the “cancer-proneness phenotype” (CPF) as a quantitative continuous trait. Upcrossing a fixed level (“threshold”) u and reaching level zero are the extremes of the Gaussian process considered; it is assumed that they might be interpreted as the transformation of CPF into a “neoplastic disease phenotype” or as the non-proneness to cancer, respectively.


2014 ◽  
Vol 134 (11) ◽  
pp. 1708-1715
Author(s):  
Tomohiro Hachino ◽  
Kazuhiro Matsushita ◽  
Hitoshi Takata ◽  
Seiji Fukushima ◽  
Yasutaka Igarashi

Author(s):  
Kevin de Vries ◽  
Anna Nikishova ◽  
Benjamin Czaja ◽  
Gábor Závodszky ◽  
Alfons G. Hoekstra

Sign in / Sign up

Export Citation Format

Share Document