gaussian process regression
Recently Published Documents


TOTAL DOCUMENTS

1621
(FIVE YEARS 977)

H-INDEX

46
(FIVE YEARS 18)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 549
Author(s):  
Xiaoyu Song ◽  
Guijun Yang ◽  
Xingang Xu ◽  
Dongyan Zhang ◽  
Chenghai Yang ◽  
...  

A better understanding of wheat nitrogen status is important for improving N fertilizer management in precision farming. In this study, four different sensors were evaluated for their ability to estimate winter wheat nitrogen. A Gaussian process regression (GPR) method with the sequential backward feature removal (SBBR) routine was used to identify the best combinations of vegetation indices (VIs) sensitive to wheat N indicators for different sensors. Wheat leaf N concentration (LNC), plant N concentration (PNC), and the nutrition index (NNI) were estimated by the VIs through parametric regression (PR), multivariable linear regression (MLR), and Gaussian process regression (GPR). The study results reveal that the optical fluorescence sensor provides more accurate estimates of winter wheat N status at a low-canopy coverage condition. The Dualex Nitrogen Balance Index (NBI) is the best leaf-level indicator for wheat LNC, PNC and NNI at the early wheat growth stage. At the early growth stage, Multiplex indices are the best canopy-level indicators for LNC, PNC, and NNI. At the late growth stage, ASD VIs provide accurate estimates for wheat N indicators. This study also reveals that the GPR with SBBR analysis method provides more accurate estimates of winter wheat LNC, PNC, and NNI, with the best VI combinations for these sensors across the different winter wheat growth stages, compared with the MLR and PR methods.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 462
Author(s):  
Hong Anh Nguyen ◽  
Van Khang Nguyen ◽  
Klaus Witrisal

Ultra-Wide Bandwidth (UWB) and mm-wave radio systems can resolve specular multipath components (SMCs) from estimated channel impulse response measurements. A geometric model can describe the delays, angles-of-arrival, and angles-of-departure of these SMCs, allowing for a prediction of these channel features. For the modeling of the amplitudes of the SMCs, a data-driven approach has been proposed recently, using Gaussian Process Regression (GPR) to map and predict the SMC amplitudes. In this paper, the applicability of the proposed multipath-resolved, GPR-based channel model is analyzed by studying features of the propagation channel from a set of channel measurements. The features analyzed include the energy capture of the modeled SMCs, the number of resolvable SMCs, and the ranging information that could be extracted from the SMCs. The second contribution of the paper concerns the potential applicability of the channel model for a multipath-resolved, single-anchor positioning system. The predicted channel knowledge is used to evaluate the measurement likelihood function at candidate positions throughout the environment. It is shown that the environmental awareness created by the multipath-resolved, GPR-based channel model yields higher robustness against position estimation outliers.


Author(s):  
Sergei Manzhos ◽  
Eita Sasaki ◽  
Manabu Ihara

Abstract We show that Gaussian process regression (GPR) allows representing multivariate functions with low-dimensional terms via kernel design. When using a kernel built with HDMR (High-dimensional model representation), one obtains a similar type of representation as the previously proposed HDMR-GPR scheme while being faster and simpler to use. We tested the approach on cases where highly accurate machine learning is required from sparse data by fitting potential energy surfaces and kinetic energy densities.


2022 ◽  
Author(s):  
Chao Wang ◽  
Nadia Elghobashi-Meinhardt ◽  
William E Balch

Understanding the fitness landscape of viral mutations is crucial for uncovering the evolutionary mechanisms contributing to pandemic behavior. Here, we apply a Gaussian process regression (GPR) based machine learning approach that generates spatial covariance (SCV) relationships to construct stability fitness landscapes for the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. GPR generated fitness scores capture on a residue-by-residue basis a covariant fitness cluster centered at the C487-H642-C645-C646 Zn2+ binding motif that iteratively evolves since the early phase pandemic. In the Alpha and Delta variant of concern (VOC), multi-residue SCV interactions in the NiRAN domain form a second fitness cluster contributing to spread. Strikingly, a novel third fitness cluster harboring a Delta VOC basal mutation G671S augments RdRp structural plasticity to potentially promote rapid spread through viral load. GPR principled SCV provides a generalizable tool to mechanistically understand evolution of viral genomes at atomic resolution contributing to fitness at the pathogen-host interface.


2022 ◽  
Author(s):  
Mengyan Zhang ◽  
Maciej B Holowko ◽  
Huw Hayman Zumpe ◽  
Cheng Soon Ong

Optimisation of gene expression levels is an essential part of the organism design process. Fine control of this process can be achieved through engineering transcription and translation control elements, including the ribosome binding site (RBS). Unfortunately, design of specific genetic parts can still be challenging due to lack of reliable design methods. To address this problem, we have created a machine learning guided Design-Build-Test-Learn (DBTL) cycle for the experimental design of bacterial RBSs to show how small genetic parts can be reliably designed using relatively small, high-quality data sets. We used Gaussian Process Regression for the Learn phase of cycle and the Upper Confidence Bound multi-armed bandit algorithm for the Design of genetic variants to be tested in vivo. We have integrated these machine learning algorithms with laboratory automation and high-throughput processes for reliable data generation. Notably, by Testing a total of 450 RBS variants in four DBTL cycles, we experimentally validated RBSs with high translation initiation rates equalling or exceeding our benchmark RBS by up to 34%. Overall, our results show that machine learning is a powerful tool for designing RBSs, and they pave the way towards more complicated genetic devices.


Sign in / Sign up

Export Citation Format

Share Document