Control strategy of virtual power plant participating in the system frequency regulation service

Author(s):  
Jianlin Yang ◽  
Qingrong Zheng ◽  
Jianli Zhao ◽  
Xuxin Guo ◽  
Ciwei Gao
2021 ◽  
Vol 1966 (1) ◽  
pp. 012053
Author(s):  
Yong Cui ◽  
Fei Xiao ◽  
Jun Gu ◽  
Weihong Wang ◽  
Liang Cao ◽  
...  

2021 ◽  
Author(s):  
Ashtabhuj Kumar Srivastava ◽  
Abdul Latif ◽  
Subash Chandra Shaoo ◽  
Dulal Chandra Das ◽  
S.M. Suhail Hussain ◽  
...  

2013 ◽  
Vol 7 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Huanhai Xin ◽  
Deqiang Gan ◽  
Chensong Dai ◽  
Huijie Li ◽  
Naihu Li

Author(s):  
Saleh Sadeghi ◽  
Hamidreza Jahangir ◽  
Behzad Vatandoust ◽  
Masoud Aliakbar Golkar ◽  
Ali Ahmadian ◽  
...  

2020 ◽  
Vol 12 (17) ◽  
pp. 6979 ◽  
Author(s):  
Partha Pratim Dey ◽  
Dulal Chandra Das ◽  
Abdul Latif ◽  
S. M. Suhail Hussain ◽  
Taha Selim Ustun

Striving for the suppression of greenhouse emissions, the modern power network is facing fundamental changes with the utilization of renewable energies (REs) for the future carbon-free society. The utilization of intermittent renewable-green power needs a better power management system and virtual power plant (VPP) can be a vital candidate that meets this demand. This study investigates a coordinated control grid integrated virtual power plant (VPP) in the presence of Central Receiver Solar Thermal System (CRSTS), Wind Turbine Generator (WTG), and Electric Vehicle (EV). To this end, CRSTS employed with thermal storage acts as a dispatchable renewable generating unit and coordinated control of the system units are achieved using the available control strategy on interconnected microgrids in the modified form, employing communication time delay. The proposed control strategy employs the proportional-integral (PI) and PI-derivative (PID) controller. Coordinated power control with real-time communication delay in grid integrated VPP in presence of CRSTS, WTG, and EV is a novel approach. Genetic algorithm (GA), Particle Swarm Optimization (PSO), Slap Swarm Algorithm (SSA), and recent Butterfly Optimization Algorithm (BOA) are used for tuning the necessary control parameters. The results establish the superiority of the BOA over SSA and PSO in suppressing system frequency deviations and tie line power deviation. The analysis of the dynamic response reveals that the consideration of the communication delay in the system expressively impedes the stable operation of the power system.


Sign in / Sign up

Export Citation Format

Share Document