Smoky Vehicle Detection Algorithm Based On Improved Transfer Learning

Author(s):  
Guangming Zhang ◽  
Dexiong Zhang ◽  
Xiaobo Lu ◽  
Yichao Cao
Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4109 ◽  
Author(s):  
Hai Wang ◽  
Yijie Yu ◽  
Yingfeng Cai ◽  
Long Chen ◽  
Xiaobo Chen

Vehicle detection is a key component of environmental sensing systems for Intelligent Vehicles (IVs). The traditional shallow model and offline learning-based vehicle detection method are not able to satisfy the real-world challenges of environmental complexity and scene dynamics. Focusing on these problems, this work proposes a vehicle detection algorithm based on a multiple feature subspace distribution deep model with online transfer learning. Based on the multiple feature subspace distribution hypothesis, a deep model is established in which multiple Restricted Boltzmann Machines (RBMs) construct the lower layers and a Deep Belief Network (DBN) composes the superstructure. For this deep model, an unsupervised feature extraction method is applied, which is based on sparse constraints. Then, a transfer learning method with online sample generation is proposed based on the deep model. Finally, the entire classifier is retrained online with supervised learning. The experiment is actuated using the KITTI road image datasets. The performance of the proposed method is compared with many state-of-the-art methods and it is demonstrated that the proposed deep transfer learning-based algorithm outperformed existing state-of-the-art methods.


2021 ◽  
Vol 1748 ◽  
pp. 032042
Author(s):  
Yunxiang Liu ◽  
Guoqing Zhang

2021 ◽  
Vol 13 (3) ◽  
pp. 809-820
Author(s):  
V. Sowmya ◽  
R. Radha

Vehicle detection and recognition require demanding advanced computational intelligence and resources in a real-time traffic surveillance system for effective traffic management of all possible contingencies. One of the focus areas of deep intelligent systems is to facilitate vehicle detection and recognition techniques for robust traffic management of heavy vehicles. The following are such sophisticated mechanisms: Support Vector Machine (SVM), Convolutional Neural Networks (CNN), Regional Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) model, etcetera. Accordingly, it is pivotal to choose the precise algorithm for vehicle detection and recognition, which also addresses the real-time environment. In this study, a comparison of deep learning algorithms, such as the Faster R-CNN, YOLOv2, YOLOv3, and YOLOv4, are focused on diverse aspects of the features. Two entities for transport heavy vehicles, the buses and trucks, constitute detection and recognition elements in this proposed work. The mechanics of data augmentation and transfer-learning is implemented in the model; to build, execute, train, and test for detection and recognition to avoid over-fitting and improve speed and accuracy. Extensive empirical evaluation is conducted on two standard datasets such as COCO and PASCAL VOC 2007. Finally, comparative results and analyses are presented based on real-time.


2021 ◽  
Author(s):  
ming ji ◽  
Chuanxia Sun ◽  
Yinglei Hu

Abstract In order to solve the increasingly serious traffic congestion problem, an intelligent transportation system is widely used in dynamic traffic management, which effectively alleviates traffic congestion and improves road traffic efficiency. With the continuous development of traffic data acquisition technology, it is possible to obtain real-time traffic data in the road network in time. A large amount of traffic information provides a data guarantee for the analysis and prediction of road network traffic state. Based on the deep learning framework, this paper studies the vehicle recognition algorithm and road environment discrimination algorithm, which greatly improves the accuracy of highway vehicle recognition. Collect highway video surveillance images in different environments, establish a complete original database, build a deep learning model of environment discrimination, and train the classification model to realize real-time environment recognition of highway, as the basic condition of vehicle recognition and traffic event discrimination, and provide basic information for vehicle detection model selection. To improve the accuracy of road vehicle detection, the vehicle target labeling and sample preprocessing of different environment samples are carried out. On this basis, the vehicle recognition algorithm is studied, and the vehicle detection algorithm based on weather environment recognition and fast RCNN model is proposed. Then, the performance of the vehicle detection algorithm described in this paper is verified by comparing the detection accuracy differences between different environment dataset models and overall dataset models, different network structures and deep learning methods, and other methods.


Sign in / Sign up

Export Citation Format

Share Document