scholarly journals Analytical and empirical evaluation of software reuse metrics

Author(s):  
P. Devanbu ◽  
S. Karstu ◽  
W. Melo ◽  
W. Thomas
1986 ◽  
Vol 47 (7) ◽  
pp. 1149-1154
Author(s):  
Le Quang Rang ◽  
D. Voslamber

Author(s):  
Vishnu Sharma ◽  
Vijay Singh Rathore ◽  
Chandikaditya Kumawat

Software reuse can improve software quality with the reducing cost and development time. Systematic reuse plan enhances cohesion and reduces coupling for better testability and maintainability. Software reuse approach can be adopted at the highest extent if relevant software components can be easily searched, adapted and integrated into new system. Large software industries hold their own well managed component libraries containing well tested software component with the project category based classification .Access to these repositories are very limited. Software reuse is facing so many problems and still not so popular. This is due to issues of general access, efficient search and adoption of software component. This paper propose a framework which resolves all of the above issues with providing easy access to components, efficient incremental semantics based search, repository management, versioning of components.


2018 ◽  
Author(s):  
Timothy Newhouse ◽  
Daria E. Kim ◽  
Joshua E. Zweig

The diverse molecular architectures of terpene natural products are assembled by exquisite enzyme-catalyzed reactions. Successful recapitulation of these transformations using chemical synthesis is hard to predict from first principles and therefore challenging to execute. A means of evaluating the feasibility of such chemical reactions would greatly enable the development of concise syntheses of complex small molecules. Herein, we report the computational analysis of the energetic favorability of a key bio-inspired transformation, which we use to inform our synthetic strategy. This approach was applied to synthesize two constituents of the historically challenging indole diterpenoid class, resulting in a concise route to (–)-paspaline A in 9 steps from commercially available materials and the first pathway to and structural confirmation of emindole PB in 13 steps. This work highlights how traditional retrosynthetic design can be augmented with quantum chemical calculations to reveal energetically feasible synthetic disconnections, minimizing time-consuming and expensive empirical evaluation.


Sign in / Sign up

Export Citation Format

Share Document