Empirical Evaluation of Defect Prediction Model - ODC in a Portal Server

2009 ◽  
Vol 4 (2) ◽  
pp. 7-15
Author(s):  
P. Kabilan ◽  
K. Iyakutti
2011 ◽  
Vol 34 (6) ◽  
pp. 1148-1154 ◽  
Author(s):  
Hui-Yan JIANG ◽  
Mao ZONG ◽  
Xiang-Ying LIU

2019 ◽  
Vol 477 ◽  
pp. 399-409 ◽  
Author(s):  
Hua Wei ◽  
Changzhen Hu ◽  
Shiyou Chen ◽  
Yuan Xue ◽  
Quanxin Zhang

Author(s):  
Chakkrit Tantithamthavorn ◽  
Shane McIntosh ◽  
Ahmed E Hassan ◽  
Kenichi Matsumoto

Shepperd et al. (2014) find that the reported performance of a defect prediction model shares a strong relationship with the group of researchers who construct the models. In this paper, we perform an alternative investigation of Shepperd et al. (2014)’s data. We observe that (a) researcher group shares a strong association with the dataset and metric families that are used to build a model; (b) the strong association among the explanatory variables introduces a large amount of interference when interpreting the impact of the researcher group on model performance; and (c) after mitigating the interference, we find that the researcher group has a smaller impact than the metric family. These observations lead us to conclude that the relationship between the researcher group and the performance of a defect prediction model may have more to do with the tendency of researchers to reuse experimental components (e.g., datasets and metrics). We recommend that researchers experiment with a broader selection of datasets and metrics to combat potential bias in their results.


Author(s):  
Liqiong Chen ◽  
Shilong Song ◽  
Can Wang

Just-in-time software defect prediction (JIT-SDP) is a fine-grained software defect prediction technology, which aims to identify the defective code changes in software systems. Effort-aware software defect prediction is a software defect prediction technology that takes into consideration the cost of code inspection, which can find more defective code changes in limited test resources. The traditional effort-aware defect prediction model mainly measures the effort based on the number of lines of code (LOC) and rarely considers additional factors. This paper proposes a novel effort measure method called Multi-Metric Joint Calculation (MMJC). When measuring the effort, MMJC takes into account not only LOC, but also the distribution of modified code across different files (Entropy), the number of developers that changed the files (NDEV) and the developer experience (EXP). In the simulation experiment, MMJC is combined with Linear Regression, Decision Tree, Random Forest, LightGBM, Support Vector Machine and Neural Network, respectively, to build the software defect prediction model. Several comparative experiments are conducted between the models based on MMJC and baseline models. The results show that indicators ACC and [Formula: see text] of the models based on MMJC are improved by 35.3% and 15.9% on average in the three verification scenarios, respectively, compared with the baseline models.


2019 ◽  
Vol 8 (3) ◽  
pp. 53-75 ◽  
Author(s):  
Mrutyunjaya Panda

Software is an important part of human life and with the rapid development of software engineering the demands for software to be reliable with low defects is increasingly pressing. The building of a software defect prediction model is proposed in this article by using various software metrics with publicly available historical software defect datasets collected from several projects. Such a prediction model can enable the software engineers to take proactive actions in enhancing software quality from the early stages of the software development cycle. This article introduces a hybrid classification method (DBBRBF) by combining distribution base balance (DBB) based instance selection and radial basis function (RBF) neural network classifier to obtain the best prediction compared to the existing research. The experimental results with post-hoc statistical significance tests shows the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document