Applying Dynamic Voltage Restorer to Mitigate the Voltage Sag in the Grid Connected Solar PV System

Author(s):  
Dinh-Nhon Truong ◽  
Mi-Sa Nguyen Thi ◽  
Van-Thuyen Ngo ◽  
Van-Phuong Ta ◽  
Van-Tri Bui ◽  
...  
2018 ◽  
Vol 7 (3) ◽  
pp. 1351
Author(s):  
Rakeshwri Pal ◽  
Sushma Gupta

Among various power quality problems, voltage sag and swell are dominant where loads are very sensitive to the voltage disturbances. Various custom power devices are introduced recently to overcome these voltage issues, dynamic voltage restorer (DVR) is one of them. It offers very cost effective solution for problems such as voltage sag, swell and harmonics by establishing the proper voltage level during voltage disturbances to protect sensitive loads. In this paper, performance of DVR to improve power quality is done for solar photovoltaic (PV) based generation system feeding the grid and the three phase linear load. Solar PV generation system is implemented with an incre-mental conductance (IC) maximum power point tracking (MPPT) technique.  The DVR is connected in between solar PV system and load. The basic structure of DVR is modified by using the photovoltaic system as an alternative to DC source and in place of conventional 2-level voltage source converter (VSC) neutral point clamped (NPC) multi level inverter is used. The system performance is analyzed in the MATLAB/Simulink environment. The simulation results justified the efficiency of modified DVR in the mitigation of voltage sag in distri-bution system. Improvement of power quality by stabilizing voltage during fault and promoting renewable energy is the main framework of this work.  


The process of electrical phenomenon primarily based Dynamic voltage restoration for a one section of the transmission line voltage dip is presented an unique technique to observe and make amends for the single part where the voltage dips is formed, simulated using advanced simulation techniques. The pre-sag alternative methods are utilized on top of proposed management. Within the aforementioned management technique the proposed where a reference voltage signal is produced matching normal voltage magnitude as well as the frequency Once the proposed restorer is operated with the system, then reference signal’s phase will be synchronised with the voltage as this system considers the error if it is a voltage dip. Thus the ability circuit within the voltage restorer produces an amendment of a wave shape to compensate the dip. Circuit components and hence the feedback circuit is discussed.


Author(s):  
Syed Suraya ◽  
P. Sujatha ◽  
P. Bharat Kumar

This paper presents a novel control strategy to control DG integrated DVR (dynamic voltage restorer) for mitigation voltage quality problems. Power quality is the most concerning areas in power engineering and voltage quality is of prime focus. Voltage sag, voltage swell and harmonics in voltage causes deterioration in quality of voltage delivered to load. A minor disturbance in voltage profile can degrade the performance of load. Dynamic voltage restorer is a quick responsive custom power device for voltage quality improvement. Photovoltaic (PV) system is considered as DG and output voltage of PV system is boosted with a boost converter to support voltage source converter of DVR. DG integrated DVR with novel control strategy for mitigation of voltage sag, swell and voltage harmonic is presented in this paper. The power system model with DG integrated DVR is developed and results are obtained using MATLAB/SIMULINK. Results are discussed during pre and post sag/swell condition with compensation and THD in voltage is maintained within nominal values.


Author(s):  
Abdelkrim Benali ◽  
Mounir Khiat ◽  
Mouloud Denai

<p class="Abstract">In this paper, we have presented a simulation study to analyze the power quality of three phases medium voltage grid connected with distribution generation (DG) such as photovoltaic (PV) farms and its control schemes. The system uses two-stage energy conversion topology composed of a DC to DC boost converter for the extraction of maximum power available from the solar PV system based on incremental inductance technique and a three-level voltage source inverter (VSI) to connect PV farm to the power grid. To maintain the grid voltage and frequency within tolerance following disturbances such as voltage swells and sags, a fuzzy logic-based Dynamic Voltage Restorer is proposed. The role of the DVR is to protect critical loads from disturbances coming from the network. Different fault conditions scenarios are tested and the results such as voltage stability, real and reactive powers, current and power factor at the point of common coupling (PCC) are compared with and without the DVR system.</p>


2015 ◽  
Vol 2 (4) ◽  
pp. 1-6
Author(s):  
K. Venkateswarlu ◽  
◽  
B. Ashwin Kumar ◽  
N. Srinivas ◽  
V. Mallikarjuna Rao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document