scholarly journals Contemporary Control of DG Integrated DVR for Sag, Swell and Harmonic Mitigation

Author(s):  
Syed Suraya ◽  
P. Sujatha ◽  
P. Bharat Kumar

This paper presents a novel control strategy to control DG integrated DVR (dynamic voltage restorer) for mitigation voltage quality problems. Power quality is the most concerning areas in power engineering and voltage quality is of prime focus. Voltage sag, voltage swell and harmonics in voltage causes deterioration in quality of voltage delivered to load. A minor disturbance in voltage profile can degrade the performance of load. Dynamic voltage restorer is a quick responsive custom power device for voltage quality improvement. Photovoltaic (PV) system is considered as DG and output voltage of PV system is boosted with a boost converter to support voltage source converter of DVR. DG integrated DVR with novel control strategy for mitigation of voltage sag, swell and voltage harmonic is presented in this paper. The power system model with DG integrated DVR is developed and results are obtained using MATLAB/SIMULINK. Results are discussed during pre and post sag/swell condition with compensation and THD in voltage is maintained within nominal values.


Author(s):  
Syed Suraya ◽  
P. Sujatha P ◽  
Bharat Kumar. P

Power quality is one of the areas that the power sector is worried about. Power quality is the measure of practical system resemblance to ideal system. Voltage quality can be defined as the maintenance of voltage waveform shape close to ideal shape with proper magnitude and frequency. Even a slight change in voltage of the system can cause serious damage to the power system. Sensitive loads cannot adjust for small change in voltage. This paper presents Dynamic Voltage Restorer (DVR) for voltage harmonic suppression along with sag/swell compensation in distribution system. DVR is a voltage source converter which sends compensating signals when operated through switches of voltage source converter. This paper presents a novel control strategy to control DVR to block out the voltage harmonics in distribution system. The models and results are developed using MATLAB/SIMULINK software and comparative analysis of source voltage harmonics and load voltage harmonics during sag/swell compensation was tabulated.



Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5742
Author(s):  
Emiyamrew Minaye Molla ◽  
Cheng-Chien Kuo

The advancement of power electronic-based sensitive loads drives the power utilities’ devotion to power quality issues. The voltage disturbance could be happening due to fault conditions, switching of loads, energizing of transformers, or integration of highly intermittent energy sources such as PV systems. This research work attempts to enhance the voltage fluctuation of a sensitive load connected to a grid-integrated PV system using a battery-based dynamic voltage restorer (DVR). The proposed battery energy storage-based DVR has two separate controlling stages that are implemented at the DC–DC buck/boost converter of the battery and voltage source converter (VSC) system. Charging and discharging of the battery is operated based on the state-of-charge (SOC) value of the battery and the measured root mean square (RMS) voltage at the point of common coupling (PCC). The VSC of the DVR detection and reference generation control is done appropriately. In the detection control of the VSC, a combination of RMS and dq0 measurement techniques is used, whereas in the reference generation control, pre-fault strategy is implemented to restore both phase jump and magnitude distortions. Symmetrical and asymmetrical voltage sags scenarios are considered and the compensation demonstration is carried out using power system computer-aided design (PSCAD/EMTDC) software.



2018 ◽  
Vol 7 (3) ◽  
pp. 1351
Author(s):  
Rakeshwri Pal ◽  
Sushma Gupta

Among various power quality problems, voltage sag and swell are dominant where loads are very sensitive to the voltage disturbances. Various custom power devices are introduced recently to overcome these voltage issues, dynamic voltage restorer (DVR) is one of them. It offers very cost effective solution for problems such as voltage sag, swell and harmonics by establishing the proper voltage level during voltage disturbances to protect sensitive loads. In this paper, performance of DVR to improve power quality is done for solar photovoltaic (PV) based generation system feeding the grid and the three phase linear load. Solar PV generation system is implemented with an incre-mental conductance (IC) maximum power point tracking (MPPT) technique.  The DVR is connected in between solar PV system and load. The basic structure of DVR is modified by using the photovoltaic system as an alternative to DC source and in place of conventional 2-level voltage source converter (VSC) neutral point clamped (NPC) multi level inverter is used. The system performance is analyzed in the MATLAB/Simulink environment. The simulation results justified the efficiency of modified DVR in the mitigation of voltage sag in distri-bution system. Improvement of power quality by stabilizing voltage during fault and promoting renewable energy is the main framework of this work.  



Author(s):  
Abdelkrim Benali ◽  
Mounir Khiat ◽  
Mouloud Denai

<p class="Abstract">In this paper, we have presented a simulation study to analyze the power quality of three phases medium voltage grid connected with distribution generation (DG) such as photovoltaic (PV) farms and its control schemes. The system uses two-stage energy conversion topology composed of a DC to DC boost converter for the extraction of maximum power available from the solar PV system based on incremental inductance technique and a three-level voltage source inverter (VSI) to connect PV farm to the power grid. To maintain the grid voltage and frequency within tolerance following disturbances such as voltage swells and sags, a fuzzy logic-based Dynamic Voltage Restorer is proposed. The role of the DVR is to protect critical loads from disturbances coming from the network. Different fault conditions scenarios are tested and the results such as voltage stability, real and reactive powers, current and power factor at the point of common coupling (PCC) are compared with and without the DVR system.</p>



2021 ◽  
Author(s):  
Dinh-Nhon Truong ◽  
Mi-Sa Nguyen Thi ◽  
Van-Thuyen Ngo ◽  
Van-Phuong Ta ◽  
Van-Tri Bui ◽  
...  


2020 ◽  
Vol 184 ◽  
pp. 01055
Author(s):  
Kummari Geethika ◽  
Vinay Kumar Awaar ◽  
Praveen Jugge

Dynamic Voltage Restorer (DVR) is a method of overcoming voltage sag and swell in electrical power distribution. To boost up voltage levels on load side on power disturbances DVR can be used so as the equipment connected will have good voltage profile In this Pulse Width Modulation inverter is in solid-state electronic switching device were employed along with Integrated Gate Bipolar Transistor by the DVR, the alternating current voltage is controllable at real and reactive powers which are made independently. The MLI; is organized as the cascaded H-bridge inverter units. The function of Multilevel Inverter; is to arrange the voltages from a significant direct current source. Here in the DVR, there is no need for external output filters. In the planned DVR, a dc-dc converter is combined with an MLI. By considering the voltage sag magnitude of a dc-dc converter can regulate the dc-link voltage. Hence the output voltage of the multilevel inverter; always has a last number of levels. Instead of using the PWM based technique, the fundamental frequency method can be used in the multilevel inverter. The proposed DVR operation range of mathematical analysis is specified in detail. The simulation results are prepared by using Simulink/MATLAB.



Author(s):  
Deshpande Chinmay V. ◽  
Deshpande Chaitanya V. ◽  
Deokar Sanjay A.

In this paper, latest technology is introduced in substitution to conventional voltage and current type inverter with Transformer based impedance (Z) source inverter in voltage sag assessment and mitigation and compared with voltage source inverter based dynamic voltage restorer. Transformer based impedance source inverters (Trans-Z source inverters) are newly proposed inverters that can be used to overcome downside of voltage source inverter, current source inverter and impedance source (Z-source) inverter. T-Z source inverter consists of transformer with high frequency and low leakage inductance along with low reactive component compared with conventional Z source inverter. In case of T-Z source inverter, voltage stress throughout Z-source capacitor is reduced along with inrush current limitation at startup. This paper presents modeling of T-Z source inverter based dynamic voltage restorer using MATLAB/SIMULINK software along with its THD analysis which is compared with VSI based dynamic voltage restorer. Here abc to dq0 control algorithm is employed. The control technique which is employed for simulation shows excellent results for voltage sag and swell compensation.





Author(s):  
Syed Suraya ◽  
P. Sujatha Sujatha ◽  
Bharat Kumar P

This paper presents a novel control strategy for the compensation of voltage quality issues in power system networks with AC drives. Voltage quality is one of the key parameter for power engineers and to deliver the power with good quality should be given at most priority. Voltage quality mitigation in power system network is done by employing dynamic voltage restorer (DVR). DVR consists of power switches and power switches are to be controlled. DVR in this paper is controlled using a novel control strategy. A novel control strategy can effectively control DVR by improving voltage quality reducing the adverse effects of voltage sag and voltage swell in power system networks. The paper presents the DVR controlled with novel control strategy for electrical machine (induction motor) drive load application.



Sign in / Sign up

Export Citation Format

Share Document