circuit components
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 110)

H-INDEX

18
(FIVE YEARS 4)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 479
Author(s):  
Marvin Sperling ◽  
Tommi Kivelä

Due to the growing number of automated guided vehicles (AGVs) in use in industry, as well as the increasing demand for limited raw materials, such as lithium for electric vehicles (EV), a more sustainable solution for mobile energy storage in AGVs is being sought. This paper presents a dual energy storage system (DESS) concept, based on a combination of an electrical (supercapacitors) and an electro-chemical energy storage system (battery), used separately depending on the required transport distance. Each energy storage unit (ESU) in this DESS is capable of supplying the AGV completely. The concept takes into account requirements for a complex material flow as well as minimizing the energy storage capacity required for the operation of the AGV. An energy flow analysis is performed and further used as a basis to derive three possible circuit concepts for the technical realization. The circuit concepts are compared to other approaches from related work, differentiating the functionality to hybrid energy storage systems (HESS). The functionality of the concepts was validated by mapping the energy flow states to active circuit components. Finally, an approach for implementing the control strategy as a state machine is given, and conclusions for further investigations are drawn.


2021 ◽  
Vol 15 ◽  
Author(s):  
Taylor Jefferson ◽  
Crystle J. Kelly ◽  
Marco Martina

Chronic pain patients suffer a disrupted quality of life not only from the experience of pain itself, but also from comorbid symptoms such as depression, anxiety, cognitive impairment, and sleep disturbances. The heterogeneity of these symptoms support the idea of a major involvement of the cerebral cortex in the chronic pain condition. Accordingly, abundant evidence shows that in chronic pain the activity of the medial prefrontal cortex (mPFC), a brain region that is critical for executive function and working memory, is severely impaired. Excitability of the mPFC depends on the integrated effects of intrinsic excitability and excitatory and inhibitory inputs. The main extracortical sources of excitatory input to the mPFC originate in the thalamus, hippocampus, and amygdala, which allow the mPFC to integrate multiple information streams necessary for cognitive control of pain including sensory information, context, and emotional salience. Recent techniques, such as optogenetic methods of circuit dissection, have made it possible to tease apart the contributions of individual circuit components. Here we review the synaptic properties of these main glutamatergic inputs to the rodent mPFC, how each is altered in animal models of chronic pain, and how these alterations contribute to pain-associated mPFC deactivation. By understanding the contributions of these individual circuit components, we strive to understand the broad spectrum of chronic pain and comorbid pathologies, how they are generated, and how they might be alleviated.


2021 ◽  
Vol 5 (3 (Under Construction)) ◽  
pp. 372-378
Author(s):  
Mihriban GÜNAY ◽  
Murat KÖSEOĞLU
Keyword(s):  

Author(s):  
Shuh-Ping Sun ◽  
Jerry Hu

In the decade of digital electronics, no matter what type is, high-value, high-complexity, high-performance devices (such as the main microprocessor core in smart phones) is undoubtedly crucial. However, simple discrete circuit components (such as capacitors, resistors, diodes, transistors, etc.) are also essential for mobile phones. In order to continue to increase functionality and reliability, reduce size and power consumption, reduce costs, and any function we seek in electronic equipment, there is always the basic principle of squeezing everything onto the same semiconductor chip. However, in some unavoidable situations, not all circuit components can run on the same chip. This service system uses a copper substrate as the core material for packaging, and can package chips with high bonding density. It provides a universal service platform for packaged products called: Scalable Universal Copper-based Packaging (CopperPak) service system. This service system is attributed to copper-based packaging (CopperPak) as a solution for expansion packaging, which can package the chip on the multifunctional component as much as possible. Scalable universal copper-based packaging (CopperPak) service system, including miniature copper-based packaging (TyniCopk) and large-scale copper-based packaging (MassyCopk) modules, used to package discrete circuit components, not only solve the discrete circuit components size, heat transfer and positioning alignment issues, and simplify the packaging process and improve yield rate.


Author(s):  
Debdeep Sarkar ◽  
Yahia Antar

In this paper, we demonstrate the usefulness of MoM (Method-of-Moments) based methods in efficient path-loss modelling for SISO (single-input single-output) communication links assisted by IRS (Intelligent Reflecting Surfaces). Being a full-wave computational electromagnetic tool, MoM is better equipped compared to high-frequency asymptotic methods like PO (Physical Optics), to handle the crucial electromagnetic (EM) effects like: mutual coupling between IRS unit-cells or interactions with spherical wave-front in antenna near-field. Furthermore, in terms of computational speed, accuracy and reproducibility, the MoM-based MATLAB Antenna Toolbox is significantly advantageous to emulate IRS-assisted wireless channels, as compared to the in-house FDTD (finite-difference time-domain) techniques. We consider a SISO system of two half-wavelength dipoles, and use a rectangular array of circular loops loaded with lumped circuit components as IRS. The lumped circuit loading enables us to control the reactance of individual unit-cells, resulting in alteration of IRS reflection coefficient and consequent changes in channel characteristics. Using numerous numerical simulations, we highlight the impacts of various IRS-parameters like: electrical size and number of unit-cells, distance of IRS from the transmitter/receiver as well as mutual coupling, on the path-loss models (both sub-6 GHz and mm-wave).


Author(s):  
Bilal A. Nasir ◽  

Due to the wide utilization of a 3-phase, squirrel-cage, self-excitation generator in renewable energy and isolated areas application, the paper deals with detailed design procedure of this type of generator, in a sequence and systematic manner. The design steps are obtained and executed in a Matlab file of the computer program to suit the newly designed constructions and parameters of the generator. In the new construction, the generator can be operated in a stable and saturation region. Due to the similarity in the construction of induction motor and generator, the formulas used in the calculation of equivalent circuit components of an induction motor may be utilized to calculate the parameters of the induction generator. To obtain optimized induction generator parameters and construction dimensions an ant colony algorithm is used to optimize these construction dimensions and generator parameters. The main objective parameters used in this algorithm are the generator efficiency, the excitation-capacitance, winding temperature rise, and minimum generator size is for 5 HP, 400 V, 50 Hz, and star connection generator.


2021 ◽  
Author(s):  
Xavier Caubit ◽  
Paolo Gubellini ◽  
Pierre L Roubertoux ◽  
Michele Carlier ◽  
Jordan Molitor ◽  
...  

We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. We show that in the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABA interneurons, while not in cholinergic interneurons or glial cells. TSHZ3-expressing cells, which are predominantly SCINs in the striatum, represent a low proportion of neurons in the ascending cholinergic projection system. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and plasticity at corticostriatal synapses, with neither cortical neuron loss nor impaired layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.


2021 ◽  
Author(s):  
Abhinandan Antony ◽  
Martin Gustafsson ◽  
Guilhem Ribeill ◽  
Matthew Ware ◽  
Anjaly Rajendran ◽  
...  

Abstract Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks, recently demonstrated in systems of superconducting qubits. However, the capacitor electrodes that comprise these qubits must be large in order to avoid lossy dielectrics. This tactic hinders scaling by increasing parasitic coupling among circuit components, degrading individual qubit addressability, and limiting the spatial density of qubits. Here, we take advantage of the unique properties of van der Waals (vdW) materials to reduce the qubit area by $>1000$ times while preserving the required capacitance without increasing substantial loss. Our qubits combine conventional aluminum-based Josephson junctions with parallel-plate capacitors composed of crystalline layers of superconducting niobium diselenide and insulating hexagonal-boron nitride. We measure a vdW transmon $T_1$ relaxation time of 1.06 $\mu$s, which demonstrates a path to achieve high-qubit-density quantum processors with long coherence times, and the broad utility of layered heterostructures in low-loss, high-coherence quantum devices.


2021 ◽  
Author(s):  
Mandira Biswas ◽  
Anup Dey ◽  
Subir Kumar Sarkar

Abstract In this present research work, we presented a new Bottom Gate P-Type Organic Field Effect Transistor (OFET) humidity sensor and its applicability towards humidity has been experimentally demonstrated. P-type organic semiconductor polyaniline (PANI) has been used in a variety of applications, including logic circuit components, electromagnetic shielding, chemical sensing, and anticorrosion. Humidity sensor can be used to monitor relative humidity (RH) in various environments. We only focus on the fabrication of conducting polymer OFETs with top contact to measure humidity and verify I-V properties. The current saturation (ISat) of p-type OFETs was 0.8 μA, while the threshold voltage VTh was 2.2V. The results of FESEM have been perform to confirm that deposited thin film grown on the substrate is purely uniform. The Proposed sensor shows that organic gate dielectrics are a low-cost alternative to inorganic gate dielectrics with good electrical performance. The proposed OFET-based sensors have a number of benefits, such as high sensitivity, low cost, quick response, and physical flexibility.


2021 ◽  
Author(s):  
Guodong Zhu ◽  
Dawei Gao

The circuit design method and control strategy of a variable-frequency inductive charger are introduced. The target application is low-power inductive charging systems where the coupling coefficient is relatively stable, e.g., mobile phone chargers with mechanical positioning aids. On the transmitter side, a high-order compensation circuit is deployed to achieve a monotonous frequency-power relation, which allows the output power to be regulated by frequency tuning. Only a half-bridge inverter is required and soft switching is achievable at most operating points. On the receiver side, the load impedance is fixed around the optimal value to improve the energy efficiency. Experimental results show that with low-loss circuit components, the proposed scheme achieves good efficiency performance under full and partial loads.<br>


Sign in / Sign up

Export Citation Format

Share Document