Performance evaluation for Industrial Automation System Integration based on enterprise architecture standards and application in Cotton Textile Industry

Author(s):  
Jun Li ◽  
Qing Li ◽  
Jian Zhou ◽  
Richard Martin
Author(s):  
Xiaobei Wang

Objective: The cotton textile industry, as a competitive industry in China's international competition, is confronting new opportunities and challenges brought by the growing process of mechatronics. To further improve the traditional drive control of combing machines made in China and the automatic level of machines as a whole, some of our cotton textile enterprises have undertaken necessary technical transformations on the combing machines so as to raise the operational efficiency and production technology of domestic textile equipments. Methods: This paper focuses on the basic status and dynamic characteristics of the drive part of the domestic new comber, and analyzes the operation process of the comber and the prominent problems from the production practice. Results: The technically improved drive control system uses an industrial control computer (IPC) as the core of the system, which effectively improves the overall working efficiency of the comber, and improves the production accuracy and production efficiency. Conclusion: The combers that are textile machinery equipments with comprehensive application of machines, electricity, gases and instruments, play a vital role in enhancing product quality and production efficiency. Highly intelligent and integrated process control, real-time monitoring and accurate data acquisition and data analysis have become the mainstreams in the development of auto-control. Therefore, the commitment of high technology to transform the traditional production mode has also been an important research.


2019 ◽  
Vol 9 (1) ◽  
pp. 561-570
Author(s):  
Khoa Dang ◽  
Igor Trotskii

AbstractEver growing building energy consumption requires advanced automation and monitoring solutions in order to improve building energy efficiency. Furthermore, aggregation of building automation data, similarly to industrial scenarios allows for condition monitoring and fault diagnostics of the Heating, Ventilations and Air Conditioning (HVAC) system. For existing buildings, the commissioned SCADA solutions provide historical trends, alarms management and setpoint curve adjustments, which are essential features for facility management personnel. The development in Internet of Things (IoT) and Industry 4.0, as well as software microservices enables higher system integration, data analytics and rich visualization to be integrated into the existing infrastructure. This paper presents the implementation of a technology stack, which can be used as a framework for improving existing and new building automation systems by increasing interconnection and integrating data analytics solutions. The implementation solution is realized and evaluated for a nearly zero energy building, as a case study.


Sign in / Sign up

Export Citation Format

Share Document