range analysis
Recently Published Documents


TOTAL DOCUMENTS

686
(FIVE YEARS 199)

H-INDEX

32
(FIVE YEARS 5)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 159
Author(s):  
Gongjin Cheng ◽  
Xuezhi Liu ◽  
He Yang ◽  
Xiangxin Xue ◽  
Lanjie Li

In this paper, orthogonal experiments are designed to study the sintering and smelting characteristics of the ludwigite ore. The predominant influencing factors of the optimal ratio, basicity and carbon content on different single sintering indexes, including the vertical sintering speed, yield rate, drum strength and low-temperature reduction pulverization index, are firstly explored by the range analysis method, and the main influencing factors on comprehensive indexes are obtained by a weighted scoring method based on different single index investigation. Considering the sintering characteristics, the primary and secondary influencing factors are: ordinary ore ratio, carbon content and basicity, and the optimal ore blending scheme is: basicity 1.7, ordinary ore blending ratio 60% and carbon content 5%. In terms of the smelting characteristics, the research obtains the order of the influencing factors on the softening start temperature, softening end temperature, softening zone, smelting start temperature, dripping temperature, smelting-dripping zone, maximum pressure difference and gas permeability index of the ludwigite sinters by simply considering various single smelting indexes. On this basis, considering the comprehensive softening-melting-dripping characteristics, the primary and secondary influencing factors are: carbon content, ordinary ore ratio and basicity, and the optimal ore blending scheme is: basicity 1.9, ordinary ore blending ratio 60% and a carbon content of 5.5%. Comprehensively, considering the sintering and smelting property of the ludwigite ore, the primary and secondary influencing factors are: carbon content, ordinary ore ratio and basicity, and the optimal ore blending scheme is: basicity 1.9, ordinary ore blending ratio 60% and a carbon content of 5.5%.


2022 ◽  
Author(s):  
Liliam K Harada ◽  
Erica C Silva ◽  
Fernando PN Rossi ◽  
Basilio Cieza ◽  
Thais J Oliveira ◽  
...  

Aim: Two lytic phages were isolated using P. aeruginosa DSM19880 as host and fully characterized. Materials & methods: Phages were characterized physicochemically, biologically and genomically. Results & conclusion: Host range analysis revealed that the phages also infect some multidrug-resistant (MDR) P. aeruginosa clinical isolates. Increasing MOI from 1 to 1000 significantly increased phage efficiency and retarded bacteria regrowth, but phage ph0034 (reduction of 7.5 log CFU/ml) was more effective than phage ph0031 (reduction of 5.1 log CFU/ml) after 24 h. Both phages belong to Myoviridae family. Genome sequencing of phages ph0031 and ph0034 showed that they do not carry toxin, virulence, antibiotic resistance and integrase genes. The results obtained are highly relevant in the actual context of bacterial resistance to antibiotics.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110670
Author(s):  
Yunfeng Li ◽  
Zongxuan Li ◽  
Qiang Yong ◽  
Tiancong Wang ◽  
Defu Zhang

The imaging quality of the synthetic aperture system is sensitive to the positioning accuracy of the sub-aperture primary mirror. A novel flexible mounting structure of bimetallic material is proposed for the athermalization of the sub-aperture primary mirror of the Fizeau Synthetic Aperture Telescope – which is composed of seven sub-aperture. The axial position accuracy of the sub-aperture primary mirror must be less than 5 µm under 10°C temperature rise to meet the requirements of the optical system. Firstly, a single mounting unit is analyzed theoretically, and the initial parameters are determined. The conceptual design of the mounting structure is carried out by using initial parameters. The orthogonal optimization algorithm and range analysis are used to optimize the structural parameters. The finite element model of the flexible mounting structure is established and the coupled thermal-mechanical simulation analysis is performed. Then the thermal sensitivity test of the sub-aperture primary mirror mounting structure was carried out. Under the effect of a temperature rise of 10°C, the axial displacement of the sub-aperture primary mirror mounting surface is less than 3 µm. Finally, the synthetic aperture system is assembled, and the optical test verifies that the synthetic aperture system has good imaging capabilities.


2022 ◽  
Vol 355 ◽  
pp. 01029
Author(s):  
Yi Mei ◽  
Maoyuan Xue

The most common optimization method for the optimization of injection mold process parameters is range analysis, but there is often a nonlinear coupling relationship between injection molding process parameters and quality indicators. Therefore, it is difficult to find the optimal process combination in range analysis. In this article, a genetic algorithm optimized extreme learning machine network model (GA-ELM) combined with genetic algorithm (GA) was proposed to optimize the process parameters of the injection mold. Take the injection molding process parameter optimization of an electrical appliance buckle cover shell as an example. In order to find the process parameters corresponding to the minimum warpage deformation, an orthogonal experiment was designed and the results of the orthogonal experiment were analyzed. Then, the corresponding optimal process combination and the degree of influence of process parameters on the warpage deformation were obtained. At the same time, the extreme learning machine network model (GA-ELM) optimized by the genetic algorithm was used to predict the warpage deformation of the plastic part. The trained GA-ELM model can map non-linear coupling relationship between the five process parameters and the warpage deformation well. And the optimal process parameters in the trained GA-ELM network model was searched by the powerful optimization ability of genetic algorithm. Generally speaking, the warpage deformation after optimization by range analysis is reduced by 6.7% compared with the minimum warpage after optimization by orthogonal experiment. But compared to the minimum warpage deformation after orthogonal experiment optimization, the warpage deformation after GAELM-GA optimization is reduced by 22%, which is better than that of the range analysis, thus verifying the feasibility and the optimization of the optimization method. This optimization method provides a certain theoretical reference and technical support for the field involving the optimization of process parameters.


2021 ◽  
Author(s):  
Ziyuan Liu ◽  
Ying Guo ◽  
Yanran Shang ◽  
Bin Yuan

Abstract The application of digital imaging to color measurement is more and more extensive, which also provides new ideas for gemology. In this paper, the single-factor experiment method and orthogonal experiment design are used to study the influence parameters of the digital imaging system (DIS) on gem color measurement. Among them, the illuminance has the most significant impact on the measurement results, followed by the exposure time, and the change of the measurement distance has an insignificant impact on the results; through range analysis and analysis of variance, the most suitable measurement parameters for red jadeite are 1600lx, 12500ms, 25cm.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bingchao Zhao ◽  
Yunxiang Ma ◽  
Yaxin Guo ◽  
Hao Sun ◽  
Jingbin Wang ◽  
...  

The similar material of collapsible loess is the basis and premise of the experimental study on the surface movement and deformation law of coal seam mining in collapsible loess-covered areas. The orthogonal experiment is used to make up similar material with different proportions using river sand and barite powder as aggregate, clay and gypsum as cementing material, and diatomite as adjusting material. The reasonable proportion of similar material in collapsible loess is studied by using range analysis, similar simulation, and field measurement. The results show that the content of diatomite plays a leading role in the collapsibility coefficient of similar material, and the collapsibility coefficient is positively correlated with the content of diatomite; moisture content is the main control of the cohesion of the material, and cohesion is negatively correlated with the moisture content; the ratio of bone-to-glue has the most significant effect on the internal friction angle, and the internal friction angle is positively correlated with the ratio of bone-to-glue. The reasonable ratio of the similar material in collapsible loess is 8 : 2 of the ratio of bone-to-glue, the ratio of clay-to-gypsum is 9 : 1, the barite powder content is 6%, the diatomite content is 23%, and the moisture content is 13%, and the mechanical parameters of the collapsible loess are 5.3%–6.3% different from the target value of similar material through laboratory tests, which can meet the experimental requirements. It is verified by a similar simulation experiment that the maximum surface subsidence value and the surface fracture width in the simulation results are 6.9% and 7.8% different from the field measured results, indicating a high degree of agreement. The results of the study have important references and guiding significance for the preparation of similar material with similar models.


Author(s):  
Xiaoyuan Zheng ◽  
Zhiying Ren ◽  
Yangyang Yang ◽  
Hongbai Bai ◽  
Yi Liang ◽  
...  

Abstract The demand for High temperature resistant metal rubber seals (MRS) with large ring-to-diameter ratio is very urgent in the industrial field. In this work, an O-type MRS with a large ring-to-diameter ratio was developed by embedding the spiral network metal rubber into the stainless steel ring with a special preparation process. The effects of frequency, porosity, and amplitude on the dynamic experimental performance of O-type MRS were studied in detail. The mechanical properties of the MRS were characterized by dynamic tests, and the damping sensitivity were analyzed by orthogonal tests. The results show that MRS has better stability under different frequencies of vibration. The energy consumption and loss factor of the sample increase with increases of porosity. With an increase in loading amplitude, the energy consumption and loss factor of the same porosity test sample increases, whereas the dynamic average stiffness of the specimen gradually decreases. Furthermore, the range analysis of the orthogonal experiment shows that the factors affecting the damping performance of the seal are porosity>amplitude>frequency. This study fills in the dynamic mechanical properties of O-shaped MRS, and provides a certain foundation for the engineering application of O-shaped MRS.


2021 ◽  
Vol 11 (24) ◽  
pp. 11628
Author(s):  
Shilin Li ◽  
Gaogao Wu ◽  
Pengfei Wang ◽  
Yan Cui ◽  
Chang Tian ◽  
...  

As a new type of atomizing nozzle with superior atomizing performance, the liquid-medium ultrasonic atomization nozzle has been widely applied in the field of spray dust reduction. In this study, in order to establish a mathematical model for predicting the Sauter mean diameter (SMD) of such nozzles, the interaction between the SMD of the nozzle and the three influencing factors, i.e., air pressure, water pressure, and outlet diameter were investigated based on the custom-designed spraying experiment platform and orthogonal design methods. Through range analysis, it was obtained that the three parameters affecting the SMD of the nozzle are in the order of air pressure > water pressure > outlet diameter. On this basis, using the multivariate nonlinear regression method, the mathematical model for predicting the SMD of the nozzle was constructed. Comparison of the experimental results with the predicted values of the SMD of the nozzle by the multivariate nonlinear regression mathematical model, showed strong similarity with an average relative error of only about 5%. Therefore, the established mathematical model in this paper can be used to predict and calculate the droplet size for liquid-medium ultrasonic atomizing nozzles.


Sign in / Sign up

Export Citation Format

Share Document