Reliability Design of a X-Band 2× 2 Tile-Type T/R Module under Thermal Shock and Random Vibration

Author(s):  
Huanpeng Wang ◽  
Jingrou Wang ◽  
Yuehang Xu
Author(s):  
Jung-Hyen Ha ◽  
Ju-Young Moon ◽  
Ki-Won Lee ◽  
Byung-Chang Nam ◽  
Sang-Won Yun
Keyword(s):  

Author(s):  
Vipin Kumar ◽  
R. Sivakumar ◽  
C. S. Jayasheela ◽  
Mahadev Sarkar ◽  
Shailendra Singh

Abstract The purpose of this paper is to disclose improved crystal based frequency source system covering design techniques and experimental methodologies for the stabilization of phase noise performance of X-band phase-locked loop (PLL) at 10.6 GHz. Phase noise performance of PLL-based unit under test (UUT) is prone to disturbance occurred in random vibration profile frequency spectrum. UUT self-resonance plays vital role in occurrence of disturbance in random vibration profile. The stabilization of phase noise performance during dynamic (random) vibration condition is achieved by following methodologies, i.e. vibration-isolator compensation techniques, purification tactic for reference crystal of PLL, and spatial location analysis for finding out mounting position of reference crystal. Spatial analysis helps to filter out UUT self-resonance frequency from random vibration spectrum which leads to reduction of frequency resonance pickups during random vibration testing.


Author(s):  
W. J. Abramson ◽  
H. W. Estry ◽  
L. F. Allard

LaB6 emitters are becoming increasingly popular as direct replacements for tungsten filaments in the electron guns of modern electron-beam instruments. These emitters offer order of magnitude increases in beam brightness, and, with appropriate care in operation, a corresponding increase in source lifetime. They are, however, an order of magnitude more expensive, and may be easily damaged (by improper vacuum conditions and thermal shock) during saturation/desaturation operations. These operations typically require several minutes of an operator's attention, which becomes tedious and subject to error, particularly since the emitter must be cooled during sample exchanges to minimize damage from random vacuum excursions. We have designed a control system for LaBg emitters which relieves the operator of the necessity for manually controlling the emitter power, minimizes the danger of accidental improper operation, and makes the use of these emitters routine on multi-user instruments.Figure 1 is a block schematic of the main components of the control system, and Figure 2 shows the control box.


2013 ◽  
Vol 51 (10) ◽  
pp. 729-734 ◽  
Author(s):  
Seol Jeon ◽  
Youngkue Choi ◽  
Hyun-Gyoo Shin ◽  
Hyun Park ◽  
Heesoo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document