thermal shock test
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 27)

H-INDEX

9
(FIVE YEARS 2)

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1477
Author(s):  
Zining Yang ◽  
Weize Wang ◽  
Shujuan Deng ◽  
Huanjie Fang ◽  
Ting Yang ◽  
...  

Gadolinium zirconate with excellent high-temperature phase stability and sintering resistance has become a very promising candidate material for a new generation of thermal barrier coatings (TBCs). However, the low fracture toughness of gadolinium zirconate greatly limits its application. In this study, gadolinium zirconate (GZ) and two kinds of toughened gadolinium zirconate (GZ/YSZ prepared by mixed powder of Gd2Zr2O7 and YSZ and GSZC prepared by (Gd0.925Sc0.075)2(Zr0.7Ce0.3)2O7 powder) double-layered TBCs were prepared by atmospheric plasma spraying (APS). The fracture toughness of the GZ/YSZ coating and GSZC coating were 9 times and 3.5 times that of GZ coating, respectively. The results of thermal shock test showed that the three TBCs exhibit different failure mechanisms. During the thermal shock test, cracking occurred at the interfaces between the YSZ layer and the BC or GZ/YSZ layer, while GSZC TBC failed due to premature cracking inside the GSZC layer. The particle erosion rate of the GZ, GZ/YSZ, and GZSC coatings were 1.81, 0.48, and 1.01 mg/g, respectively, indicating that the erosion resistance of coatings is related to their fracture toughness. Furthermore, the superior erosion resistance of the GZ/YSZ and GSZC coatings can be attributed to the conversion of crack propagation path during the erosion test.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6104
Author(s):  
Xiaochong Liu ◽  
Xiaojun Guo ◽  
Youliang Xu ◽  
Longbiao Li ◽  
Wang Zhu ◽  
...  

In this paper, the SiC/SiC high-pressure turbine twin guide vanes were fabricated using the chemical vapor infiltration (CVI) method. Cyclic thermal shock tests at different target temperatures (i.e., 1400, 1450, and 1480 °C) in a gas environment were conducted to investigate the damage mechanisms and failure modes. During the thermal shock test, large spalling areas appeared on the leading edge and back region. After 400 thermal shock cycles, the spalling area of the coating at the basin and back region of the guide vane was more than 30%, and the whole guide vane turned gray, due to the formation of SiO2. When the thermal shock temperature increased from 1400 to 1450 and 1480 °C, the spalling area of the basin and the back region of the guide vane did not increase significantly, but the delamination occurred at the tenon, upper surface of the guide vane near the trailing edge of the guide vane. Through the X-ray Computed Tomography (XCT) analysis for the guide vanes before and after thermal shock, there was no obvious damage inside of guide vanes. The oxidation of SiC coating and the formation of SiO2 protects the internal fibers from oxidation and damage. Further investigation on the effect of thermal shock on the mechanical properties of SiC/SiC composites should be conducted in the future.


2021 ◽  
Author(s):  
Da-Eun Hyun ◽  
Jwa-Bin Jeon ◽  
Yeon-Ji Choi ◽  
Yeon-Sook Lee ◽  
Yong-Nam Kim ◽  
...  

Abstract Spherical mullite (M)-cordierite (C) composite granules were prepared by spray drying the fine starting powders obtained from attrition milling to produce sintered mullite-cordierite composite pellets with a dense structure. The effects of attrition milling on the morphology, size and size distribution of the formed composite granules were investigated. The results showed that the milled starting powders formed the spherical granules with homogeneous size distribution. The composition ratio (M:C = 100:0, M:C = 90:10, M:C = 70:30, M:C = 50:50, M:C = 30:70, M:C = 0:100) and sintering temperature (1300–1450℃) were optimized to fabricate the sintered mullite-cordierite composite pellets with low thermal expansion coefficients (TECs) and excellent mechanical properties. Samples of 70 wt% mullite-30 wt% cordierite sintered at 1350℃ exhibited excellent bulk density, porosity, TEC, and flexural strength. Based on these results, a large-area mullite-cordierite composite substrate was fabricated for application in semiconductor probe card. The changes in sheet resistance and flexural strength were measured to study the influence of the environmental tests, including high temperature storage test, damp heat test, and thermal shock test, on the large-area substrate. A low rate of change in sheet resistance and flexural strength was observed. After the environmental tests, the sheet resistance and flexural strength were confirmed to be within 10% of their values prior to the tests. These results show that the fabricated mullite-cordierite composite exhibits high reliability and durability and is a suitable for semiconductor probe cards.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5532
Author(s):  
Keisuke Wakamoto ◽  
Takukazu Otsuka ◽  
Ken Nakahara ◽  
Takahiro Namazu

This paper investigates the degradation mechanism of pressure-sintered silver (s-Ag) film for silicon carbide (SiC) chip assembly with a 2-millimeter-thick copper substrate by means of thermal shock test (TST). Two different types of silver paste, nano-sized silver paste (NP) and nano-micron-sized paste (NMP), were used to sinter the silver film at 300 °C under a pressure of 60 MPa. The mean porosity (p) of the NP and MNP s-Ag films was 2.4% and 8%, respectively. The pore shape of the NP s-Ag was almost spherical, whereas the NMP s-Ag had an irregular shape resembling a peanut shell. After performing the TST at temperatures ranging from −40 to 150 °C, the scanning acoustic tomography (SAT) results suggested that delamination occurs from the edge of the assembly, and the delamination of the NMP s-Ag assembly was faster than that of the NM s-Ag assembly. The NMP s-Ag assembly showed a random delamination, indicating that the delamination speed varies from place to place. The difference in fracture mechanism is discussed based on cross-sectional scanning electron microscope (SEM) observation results after TST and plastic strain distribution results estimated by finite element analysis (FEA) considering pore configuration.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4775 ◽  
Author(s):  
Xiaoyu Wang ◽  
Saixin Wang ◽  
Yuandong Mu ◽  
Ruijie Zhao ◽  
Qingfeng Wang ◽  
...  

Additions of andalusite aggregates (19 wt%) were shown in previous literature to enhance the antioxidation of Al2O3-SiC-C (ASC) castables. This work aims to investigate whether micronized andalusite has a greater influence on antioxidation improvement than andalusite aggregates. Various low contents (5 wt% and below) of micronized andalusite (≤5 μm) were introduced as a substitute for brown fused alumina in the matrix of ASC castables. The antioxidation of castable specimens was estimated by the oxidized area ratio on the fracture surface after a thermal shock test. The microstructure and phases of micronized andalusite and the castable specimens were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results suggest that the antioxidation effects of ASC castables with a low addition of micronized andalusite are effectively enhanced. The heat-induced transformation of andalusite produces SiO2-rich glass, favoring the sintering of the castable matrix and impeding oxygen diffusion into the castable’s interior. Therefore, the castable antioxidation is enhanced without deteriorating the hot modulus of rupture.


2021 ◽  
Vol 64 (5) ◽  
pp. 323-329
Author(s):  
V. V. Aksenova ◽  
S. A. Alimbaev ◽  
A. V. Pavlov ◽  
R. M. Mustafin

Waste from corundum production in the form of porous alumina sludge is a promising material for providing ferrous metallurgy with cheap alumina-containing slag-formers. However, the direct feeding of the pulverized materials to the steelmaking furnace generally results in a significant carryover of such materials with waste gases. This paper considers the possibility of making briquettes from porous sludge of corundum production by cold briquetting using various common binders (molasses, cement, powder based on polyacrylamide, emulsion based on polyvinyl acetate). A comparison of the features of cold briquetting of powdered porous materials (slimes from the production of electrocorundum) and dispersed crystalline materials (fines of chrome ore) was made. Experiments were carried out to determine the impact strength of briquettes on different binder (“cold” strength) and tests to determine the “hot” strength (by the “thermal shock” test method). The authors have determined the consumption of the binder required to obtain satisfactory characteristics of briquettes from corundum slimes and from chrome ore fines. A technique has been developed and a mechanism for the binding of particles of loose and crystalline materials has been determined during briquetting using polyacrylamide powder. The destruction of a briquette of loose materials occurs mainly along the grains of the most porous material, and briquettes of crystalline materials are destroyed along the boundaries of the grains glued with a binder. For porous materials, the binder consumption increases more than twice as compared to briquetting on the same binder crystalline bodies of a fine fraction, and the binder must necessarily impregnate the entire volume of the porous material.


Sign in / Sign up

Export Citation Format

Share Document