Web Service Clustering Technique based on Contextual Word Embedding for Service Representation

Author(s):  
Neha Agarwal ◽  
Geeta Sikka ◽  
Lalit K Awasthi
2018 ◽  
Vol 15 (4) ◽  
pp. 29-44 ◽  
Author(s):  
Yi Zhao ◽  
Chong Wang ◽  
Jian Wang ◽  
Keqing He

With the rapid growth of web services on the internet, web service discovery has become a hot topic in services computing. Faced with the heterogeneous and unstructured service descriptions, many service clustering approaches have been proposed to promote web service discovery, and many other approaches leveraged auxiliary features to enhance the classical LDA model to achieve better clustering performance. However, these extended LDA approaches still have limitations in processing data sparsity and noise words. This article proposes a novel web service clustering approach by incorporating LDA with word embedding, which leverages relevant words obtained based on word embedding to improve the performance of web service clustering. Especially, the semantically relevant words of service keywords by Word2vec were used to train the word embeddings and then incorporated into the LDA training process. Finally, experiments conducted on a real-world dataset published on ProgrammableWeb show that the authors' proposed approach can achieve better clustering performance than several classical approaches.


Author(s):  
Banage T. G. S. Kumara ◽  
Incheon Paik ◽  
Hiroki Ohashi ◽  
Wuhui Chen ◽  
Koswatte R. C. Koswatte

2020 ◽  
Vol 17 (4) ◽  
pp. 32-54
Author(s):  
Banage T. G. S. Kumara ◽  
Incheon Paik ◽  
Yuichi Yaguchi

With the large number of web services now available via the internet, web service discovery has become a challenging and time-consuming task. Organizing web services into similar clusters is a very efficient approach to reducing the search space. A principal issue for clustering is computing the semantic similarity between services. Current approaches do not consider the domain-specific context in measuring similarity and this has affected their clustering performance. This paper proposes a context-aware similarity (CAS) method that learns domain context by machine learning to produce models of context for terms retrieved from the web. To analyze visually the effect of domain context on the clustering results, the clustering approach applies a spherical associated-keyword-space algorithm. The CAS method analyzes the hidden semantics of services within a particular domain, and the awareness of service context helps to find cluster tensors that characterize the cluster elements. Experimental results show that the clustering approach works efficiently.


Sign in / Sign up

Export Citation Format

Share Document