Fault-Tolerant PMSG Direct-Drive Wind Turbines, using Vector Control Techniques with Reduced DC-Link Ratings

Author(s):  
Imed Jlassi ◽  
Fernando Bento ◽  
Antonio J. Marques Cardoso
Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3097 ◽  
Author(s):  
Donggil Kim ◽  
Dongik Lee

Wind energy is one of the fastest growing energy sources in the world. It is expected that by the end of 2022 the installed capacity will exceed 250 GW thanks to the supply of large scale wind turbines in Europe. However, there are still challenging problems with wind turbines. In particular, off-shore and large-scale wind turbines are required to tackle the issue of maintainability and availability because they are installed in harsh off-shore environments, which may also prevent engineers from accessing the site for immediate repair works. Fault-tolerant control techniques have been widely exploited to overcome this issue. This paper proposes a novel fault-tolerant control strategy for wind turbines. The proposed strategy has a hierarchical structure, consisting of a pitch controller and a wind turbine controller, with parameter estimations using the adaptive fading Kalman filter technique. The pitch controller compensates any fault with a pitching actuator, while the wind turbine controller computes the optimal reference command for pitching behavior so that the effect of the fault with a pitch actuator can be minimized. The performance of the proposed approach is demonstrated through a set of simulations with a wind turbine benchmark model.


2014 ◽  
Vol 25 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Mehdi Allagui ◽  
Othman B.k. Hasnaoui ◽  
Jamel Belhadj

This paper presents a comparative study on the most popular control strategies used to control high power, Direct Drive Wind Turbines. The studied wind turbine is equipped with a supervision scheme in order to fulfil Grid connection requirements (GCR). For the generator-side converter, performances of the Field Oriented Control (FOC) and Direct Torque Control (DTC) are compared. Concerning the grid-side converter, Voltage Oriented Control (VOC) and Direct Power Control (DPC) are examined. The comparison is based on various criteria mainly, steady-state and transient performances. In addition, performances are evaluated in terms of low voltage ride through capabilities (LVRT), power limitation and reactive power control. It has been shown that best power quality features are given by vector control techniques. On the other hand, direct control offers the better dynamic response and power cross-coupling is substantially lower. Furthermore, during fault, the wind turbine does not trip for both techniques. However, vector control is better since it gives low power oscillations


2020 ◽  
Vol 1618 ◽  
pp. 022060
Author(s):  
Christoph Mülder ◽  
Tobias Duda ◽  
Georg Jacobs ◽  
Kay Hameyer

Sign in / Sign up

Export Citation Format

Share Document