Vegetation Effects for Remote Sensing of Soil Moisture Using NMM3D Full-wave Simulation

Author(s):  
Weihui Gu ◽  
Leung Tsang
2021 ◽  
Author(s):  
Isabella Pfeil ◽  
Wolfgang Wagner ◽  
Sebastian Hahn ◽  
Raphael Quast ◽  
Susan Steele-Dunne ◽  
...  

<div> <p>Soil moisture (SM) datasets retrieved from the advanced scatterometer (ASCAT) sensor are well established and widely used for various hydro-meteorological, agricultural, and climate monitoring applications. Besides SM, ASCAT is sensitive to vegetation structure and vegetation water content, enabling the retrieval of vegetation optical depth (VOD; 1). The challenge in the retrieval of SM and vegetation products from ASCAT observations is to separate the two effects. As described by Wagner et al. (2), SM and vegetation affect the relation between backscatter and incidence angle differently.  At high incidence angles, the response from bare soil and thus the sensitivity to SM conditions is significantly weaker than at low incidence angles, leading to decreasing backscatter with increasing incidence angle. The presence of vegetation on the other hand decreases the backscatter dependence on the incidence angle. The dependence of backscatter on the incidence angle can be described by a second-order Taylor polynomial based on a slope and a curvature coefficient. It was found empirically that SM conditions have no significant effect on the steepness of the slope, and that therefore, SM and vegetation effects can be separated using the slope (2).  This is a major assumption in the TU Wien soil moisture retrieval algorithm used in several operational soil moisture products. However, recent findings by Quast et al. (3) using a first-order radiative transfer model for the inversion of soil and vegetation parameters from scatterometer observations indicate that SM may influence the slope, as the SM-induced backscatter increase is more pronounced at low incidence angles. </p> </div><div> <div> <p>The aim of this analysis is to revisit the assumption that SM does not affect the slope of the backscatter incidence angle relations by investigating if short-term variability, observed in ASCAT slope timeseries on top of the seasonal vegetation cycle, is caused by SM. We therefore compare timeseries and anomalies of the ASCAT slope to air temperature, rainfall and SM from the ERA5-Land dataset. We carry out the analysis in a humid continental climate (Austria) and a Mediterranean climate study region (Portugal). First results show significant negative correlations between slope and SM anomalies. However, correlations between temperature and slope anomalies are of a similar magnitude, albeit positive, which may reflect temperature-induced vegetation dynamics. The fact that temperature and SM are strongly correlated with each other complicates the interpretation of the results. Thus, our second approach is to investigate daily slope values and their change between dry and wet days. The results of this study shall help to quantify the uncertainties in ASCAT SM products caused by the potentially inadequate assumption of a SM-independent slope. </p> </div> <div> <p> </p> </div> <div> <p>(1) Vreugdenhil, Mariette, et al. "Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval." IEEE Transactions on Geoscience and Remote Sensing 54.6 (2016): 3513-3531.</p> <p><span>(2) Wagner, Wolfgang, et al. "Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer." IEEE Transactions on Geoscience and Remote Sensing 37.1 (1999): 206-216. </span></p> </div> <div> <p>(3) Quast, Raphael, et al. "A Generic First-Order Radiative Transfer Modelling Approach for the Inversion of Soil and Vegetation Parameters from Scatterometer Observations." Remote Sensing 11.3 (2019): 285.</p> </div> </div>


2021 ◽  
pp. 103673
Author(s):  
Zhao-Liang Li ◽  
Pei Leng ◽  
Cheng-Hu Zhou ◽  
Kun-Shan Chen ◽  
Fang-Cheng Zhou ◽  
...  

2020 ◽  
Vol 12 (16) ◽  
pp. 2587
Author(s):  
Yan Nie ◽  
Ying Tan ◽  
Yuqin Deng ◽  
Jing Yu

As a basic agricultural parameter in the formation, transformation, and consumption of surface water resources, soil moisture has a very important influence on the vegetation growth, agricultural production, and healthy operation of regional ecosystems. The Aksu river basin is a typical semi-arid agricultural area which seasonally suffers from water shortage. Due to the lack of knowledge on soil moisture change, the water management and decision-making processes have been a difficult issue for local government. Therefore, soil moisture monitoring by remote sensing became a reasonable way to schedule crop irrigation and evaluate the irrigation efficiency. Compared to in situ measurements, the use of remote sensing for the monitoring of soil water content is convenient and can be repetitively applied over a large area. To verify the applicability of the typical drought index to the rapid acquisition of soil moisture in arid and semi-arid regions, this study simulated, compared, and validated the effectiveness of soil moisture inversion. GF-1 WFV images, Landsat 8 OLI images, and the measured soil moisture data were used to determine the Perpendicular Drought Index (PDI), the Modified Perpendicular Drought Index (MPDI), and the Vegetation Adjusted Perpendicular Drought Index (VAPDI). First, the determination coefficients of the correlation analyses on the PDI, MPDI, VAPDI, and measured soil moisture in the 0–10, 10–20, and 20–30 cm depth layers based on the GF-1 WFV and Landsat 8 OLI images were good. Notably, in the 0–10 cm depth layers, the average determination coefficient was 0.68; all models met the accuracy requirements of soil moisture inversion. Both indicated that the drought indices based on the Near Infrared (NIR)-Red spectral space derived from the optical remote sensing images are more sensitive to soil moisture near the surface layer; however, the accuracy of retrieving the soil moisture in deep layers was slightly lower in the study area. Second, in areas of vegetation coverage, MPDI and VAPDI had a higher inversion accuracy than PDI. To a certain extent, they overcame the influence of mixed pixels on the soil moisture spectral information. VAPDI modified by Perpendicular Vegetation Index (PVI) was not susceptible to vegetation saturation and, thus, had a higher inversion accuracy, which makes it performs better than MPDI’s in vegetated areas. Third, the spatial heterogeneity of the soil moisture retrieved by the GF-1 WFV and Landsat 8 OLI image were similar. However, the GF-1 WFV images were more sensitive to changes in the soil moisture, which reflected the actual soil moisture level covered by different vegetation. These results provide a practical reference for the dynamic monitoring of surface soil moisture, obtaining agricultural information and agricultural condition parameters in arid and semi-arid regions.


Sign in / Sign up

Export Citation Format

Share Document