Biologically inspired receptive field geometry and orientation for pattern recognition enhancement

Author(s):  
C.A. Perez ◽  
C. Salinas
2007 ◽  
Vol 97 (5) ◽  
pp. 3439-3448 ◽  
Author(s):  
Yamei Tang ◽  
Alan Saul ◽  
Moshe Gur ◽  
Stephanie Goei ◽  
Elsie Wong ◽  
...  

Studies of visual function in behaving subjects require that stimuli be positioned reliably on the retina in the presence of eye movements. Fixational eye movements scatter stimuli about the retina, inflating estimates of receptive field dimensions, reducing estimates of peak responses, and blurring maps of receptive field subregions. Scleral search coils are frequently used to measure eye position, but their utility for correcting the effects of fixational eye movements on receptive field maps has been questioned. Using eye coils sutured to the sclera and preamplifiers configured to minimize cable artifacts, we reexamined this issue in two rhesus monkeys. During repeated fixation trials, the eye position signal was used to adjust the stimulus position, compensating for eye movements and correcting the stimulus position to place it at the desired location on the retina. Estimates of response magnitudes and receptive field characteristics in V1 and in LGN were obtained in both compensated and uncompensated conditions. Receptive fields were narrower, with steeper borders, and response amplitudes were higher when eye movement compensation was used. In sum, compensating for eye movements facilitated more precise definition of the receptive field. We also monitored horizontal vergence over long sequences of fixation trials and found the variability to be low, as expected for this precise behavior. Our results imply that eye coil signals can be highly accurate and useful for optimizing visual physiology when rigorous precautions are observed.


2000 ◽  
Vol 21 (3) ◽  
pp. 213-219 ◽  
Author(s):  
Thaddeus Roppel ◽  
Denise M Wilson

1997 ◽  
Vol 37 (1) ◽  
pp. 99-119 ◽  
Author(s):  
R.ERIC FREDERICKSEN ◽  
FRANS A.J. VERSTRATEN ◽  
WIM A. van de GRIND

Author(s):  
Yuqing Wang ◽  
Yong Wang

A biologically inspired image fusion mechanism is analyzed in this paper. A pseudo-color image fusion method is proposed based on the improvement of a traditional method. The proposed model describes the fusion process using several abstract definitions which correspond to the detailed behaviors of neurons. Firstly, the infrared image and visible image are respectively ON against enhanced and OFF against enhanced. Secondly, we feed back the enhanced visible images given by the ON-antagonism system to the active cells in the center-surrounding antagonism receptive field. The fused [Formula: see text]VIS[Formula: see text]IR signal are obtained by feeding back the OFF-enhanced infrared image to the corresponding surrounding-depressing neurons. Then we feed back the enhanced visible signal from OFF-antagonism system to the depressing cells in the center-surrounding antagonism receptive field. The ON-enhanced infrared image is taken as the input signal of the corresponding active cells in the neurons, then the cell response of infrared-enhance-visible is produced in the process, it is denoted as [Formula: see text]IR[Formula: see text]VIS. The three kinds of signal are considered as R, G and B components in the output composite image. Finally, some experiments are performed in order to evaluate the performance of the proposed method. The information entropy, average gradient and objective image fusion measure are used to assess the performance of the proposed method objectively. Some traditional digital signal processing-based fusion methods are also evaluated for comparison in the experiments. In this paper, the Quantitative assessment indices show that the proposed fusion model is superior to the classical Waxman’s model, and some of its performance is better than the other image fusion methods.


2010 ◽  
Vol 11 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Eduardo Gonzalez ◽  
Hans Liljenström ◽  
Yusely Ruiz ◽  
Guang Li

Sign in / Sign up

Export Citation Format

Share Document