genetic selection
Recently Published Documents


TOTAL DOCUMENTS

1239
(FIVE YEARS 301)

H-INDEX

68
(FIVE YEARS 7)

2022 ◽  
Vol 3 (2) ◽  
pp. 40
Author(s):  
José Alfredo Villagómez-Cortés ◽  
Blanca Leydi Guevara-Torres ◽  
Luis Antonio Landin-Grandvallet ◽  
Alberto Tirado-Madrid

The rapid weight gain and fast muscle growth due to intense genetic selection and improved nutrition for additional breast muscle in broiler commercial strains affect chickens health. In order to compare the main locomotive problems in broilers of Cobb and Ross strains, two pens from a commercial farm in Veracruz, Mexico were used. The first pen housed 16,500 males and 16,500 females of Cobb strain and the second one 16,500 males and 16,500 females of Ross strain. Chicks were checked for locomotion problems from day one until their sale. Animals with problems were recorded and necropsies were performed to identify the pathology. Out of 1406 animals with locomotive problems (2.13% of the total), 58.9% were Cobb and 41.1% Ross (P <0.05). The frequency of locomotive problems was 2.51% for Cobb and 1.75% for Ross. Most common individual lesions were osteochondrosis (38.61%), inflamed joints with purulent contents (37.13%), and valgus (19.65%). Locomotive problems appeared since the first week, but its number increased as birds gained weight, particularly from the fourth week on. Problems occurred more in males than in females and in Cobb birds than in the Ross strain. Economic loss due to locomotion problems was higher for the Cobb strain.


2022 ◽  
Author(s):  
Chin Jian Yang ◽  
Olufunmilayo Ladejobi ◽  
Richard Mott ◽  
Wayne Powell ◽  
Ian Mackay

Winter wheat is a major crop with a rich selection history in the modern era of crop breeding. Genetic gains across economically important traits like yield have been well characterized and are the major force driving its production. Winter wheat is also an excellent model for analyzing historical genetic selection. As a proof of concept, we analyze two major collections of winter wheat varieties that were bred in western Europe from 1916 to 2010, namely the Triticeae Genome (TG) and WAGTAIL panels, which include 333 and 403 varieties respectively. We develop and apply a selection mapping approach, Regression of Alleles on Years (RALLY), in these panels, as well as in simulated populations. RALLY maps loci under sustained historical selection by using a simple logistic model to regress allele counts on years of variety release. To control for drift-induced allele frequency change, we develop a hybrid approach of genomic control and delta control. Within the TG panel, we identify 22 significant RALLY quantitative selection loci (QSLs) and estimate the local heritabilities for 12 traits across these QSLs. By correlating predicted marker effects with RALLY regression estimates, we show that alleles whose frequencies have increased over time are heavily biased towards conferring positive yield effect, but negative effects in flowering time, lodging, plant height and grain protein content. Altogether, our results (1) demonstrate the use of RALLY to identify selected genomic regions while controlling for drift, and (2) reveal key patterns in the historical selection in winter wheat and guide its future breeding.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Tianliu Zhang ◽  
Qunhao Niu ◽  
Tianzhen Wang ◽  
Xu Zheng ◽  
Haipeng Li ◽  
...  

Beef is an important dietary source of quality animal proteins and amino acids in human nutrition. The fatty acid composition is one of the indispensable indicators affecting nutritional value of beef. However, a comprehensive understanding of the expression changes underlying fatty acid composition in representative beef cuts is needed in cattle. This study aimed to characterize the dynamics of fatty acid composition using comparative transcriptomic analysis in five different type of beef cuts. We identified 7545 differentially expressed genes (DEGs) among 10 pair-wise comparisons. Co-expression gene network analysis identified two modules, which were significantly correlated with 2 and 20 fatty acid composition, respectively. We also identified 38 candidate genes, and functional enrichment showed that these genes were involved in fatty acid biosynthetic process and degradation, PPAR, and AMPK signaling pathway. Moreover, we observed a cluster of DEGs (e.g., SCD, LPL, FABP3, and PPARD) which were involved in the regulation of lipid metabolism and adipocyte differentiation. Our results provide some valuable insights into understanding the transcriptome regulation of candidate genes on fatty acid composition of beef cuts, and our findings may facilitate the designs of genetic selection program for beneficial fatty acid composition in beef cattle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Giorgio Brugaletta ◽  
Elizabeth Greene ◽  
Travis Tabler ◽  
Sara Orlowski ◽  
Federico Sirri ◽  
...  

Heat stress (HS) has been increasingly jeopardizing the sustainability of the poultry production. Moreover, modern high-performing chickens are far less able to withstand HS than their predecessors due to higher growth rate and metabolic rates. Performance losses caused by HS are mainly ascribed to decreases in feed consumption. Since feed intake is tightly controlled by the hypothalamic centers of hunger and satiety, we sought to determine the effect of chronic cyclic HS on the expression of feeding-related hypothalamic neuropeptides (FRHN) in unselected chickens (i.e., the ancestor junglefowl—JF) and three broiler lines from diverse stages of genetic selection (i.e., the slow growing ACRB, the moderate growing 95RN, and the fast growing MRB). From 29 to 56 days, birds (n = 150 birds for each population) were subjected to either thermoneutral (TN, 25°C) or cyclic heat stress (HS, 36°C, 0900–1,800 h) conditions. Molecular data were analyzed by two-way ANOVA with interaction between the main factors, namely environmental temperature and line. The expression of major FHRN, like neuropeptide Y, agouti-related peptide, proopiomelanocortin, and cocaine and amphetamine regulated transcript remained unchanged. However, melanocortin receptor 1 exhibited a line-dependent decreasing trend from JF to MRB under both TN and HS (p = 0.09), adiponectin expression showed a distinct trend toward significance with 95RB exhibiting the highest mRNA level irrespective of the environmental temperature (p = 0.08), and JF had a greater mRNA abundance of visfatin than ACRB under TN (p &lt; 0.05). The hypothalamic integration of circadian information, acclimation to long-lasting HS exposure, stable hypothalamic pathways unaffected by evolution and genetic selection, focus on mRNA abundances, and use of the entire hypothalamus masking gene expression in specific hypothalamic nuclei are all possible explanations for the lack of variations observed in this study. In conclusion, this is the first assessment of the impacts of heat stress on feeding-related hypothalamic neuropeptides of chicken, with a valuable and informative comparison between the ancestor junglefowl and three differently performing broiler lines.


Author(s):  
S. McCabe ◽  
N. McHugh ◽  
N.E. O’Connell ◽  
R. Prendiville

The objective of this study was to investigate the effect of genetic merit of the national Irish maternal index and genotype (i.e. beef vs. beef × dairy [BDX]) of beef cows and subsequent performance of their progeny. With the exception that high genetic merit cows produced 0.57 kg more milk and tended to have 0.04 of a lower body condition score (BCS), no significant differences were observed between cows of diverse genetic merit. Differences between contrasting cow genotype were apparent. Beef cows were 50 kg heavier and had a BCS 0.27 greater than BDX cows. The BDX cows produced 1.67 kg more milk and had a greater 24-d submission rate than beef cows. Calves generated from BDX cows were 19 kg heavier at weaning and were worth €51 more than progeny generated from beef cows. Beef cow progeny, however, had 0.77 of a greater conformation score at slaughter than BDX. While differences were observed across cows of different replacement strategies, results from the current study showed that genetic selection for national maternal index had no effect on the overall performance of suckler cows in a pasture-based spring-calving system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jean-Luc Gourdine ◽  
Wendy Mercedes Rauw ◽  
Hélène Gilbert ◽  
Nausicaa Poullet

Heat stress (HS) affects pig performance, health and welfare, resulting in a financial burden to the pig industry. Pigs have a limited number of functional sweat glands and their thermoregulatory mechanisms used to maintain body temperature, are challenged by HS to maintain body temperature. The genetic selection of genotypes tolerant to HS is a promising long-term (adaptation) option that could be combined with other measures at the production system level. This review summarizes the current knowledge on the genetics of thermoregulation in pigs. It also discusses the different phenotypes that can be used in genetic studies, as well as the variability in thermoregulation between pig breeds and the inheritance of traits related to thermoregulation. This review also considers on-going challenges to face for improving heat tolerance in pigs.


2021 ◽  
Vol 118 (51) ◽  
pp. e2109865118
Author(s):  
Jon Wade ◽  
David J. Byrne ◽  
Chris J. Ballentine ◽  
Hal Drakesmith

Iron is an irreplaceable component of proteins and enzyme systems required for life. This need for iron is a well-characterized evolutionary mechanism for genetic selection. However, there is limited consideration of how iron bioavailability, initially determined by planetary accretion but fluctuating considerably at global scale over geological time frames, has shaped the biosphere. We describe influences of iron on planetary habitability from formation events >4 Gya and initiation of biochemistry from geochemistry through oxygenation of the atmosphere to current host–pathogen dynamics. By determining the iron and transition element distribution within the terrestrial planets, planetary core formation is a constraint on both the crustal composition and the longevity of surface water, hence a planet’s habitability. As such, stellar compositions, combined with metallic core-mass fraction, may be an observable characteristic of exoplanets that relates to their ability to support life. On Earth, the stepwise rise of atmospheric oxygen effectively removed gigatons of soluble ferrous iron from habitats, generating evolutionary pressures. Phagocytic, infectious, and symbiotic behaviors, dating from around the Great Oxygenation Event, refocused iron acquisition onto biotic sources, while eukaryotic multicellularity allows iron recycling within an organism. These developments allow life to more efficiently utilize a scarce but vital nutrient. Initiation of terrestrial life benefitted from the biochemical properties of abundant mantle/crustal iron, but the subsequent loss of iron bioavailability may have been an equally important driver of compensatory diversity. This latter concept may have relevance for the predicted future increase in iron deficiency across the food chain caused by elevated atmospheric CO2.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8140
Author(s):  
Alexandre Dore ◽  
Cristian Pasquaretta ◽  
Dominique Henry ◽  
Edmond Ricard ◽  
Jean-François Bompa ◽  
...  

The automated quantification of the behaviour of freely moving animals is increasingly needed in applied ethology. State-of-the-art approaches often require tags to identify animals, high computational power for data collection and processing, and are sensitive to environmental conditions, which limits their large-scale utilization, for instance in genetic selection programs of animal breeding. Here we introduce a new automated tracking system based on millimetre-wave radars for real time robust and high precision monitoring of untagged animals. In contrast to conventional video tracking systems, radar tracking requires low processing power, is independent on light variations and has more accurate estimations of animal positions due to a lower misdetection rate. To validate our approach, we monitored the movements of 58 sheep in a standard indoor behavioural test used for assessing social motivation. We derived new estimators from the radar data that can be used to improve the behavioural phenotyping of the sheep. We then showed how radars can be used for movement tracking at larger spatial scales, in the field, by adjusting operating frequency and radiated electromagnetic power. Millimetre-wave radars thus hold considerable promises precision farming through high-throughput recording of the behaviour of untagged animals in different types of environments.


2021 ◽  
Vol 1 (11) ◽  
pp. 71-77
Author(s):  
A. F. Karpenko

The authors analyze the dynamics of the Belarusian dairy sector development within a period from 2016 to 2020 being one of the major internal and external market suppliers of milk and dairy products. Since 2011, per capita growth has reached 141 kg. Export opportunities are expanding as well. It is noted that provision of milk in this period has been stable, with the gross production reaching 7765 thousand tons of milk by 2020, or 828 kg per capita. With its share of 38,8 to 43,8% in 2016–2020, milk and dairy products were playing a leading role in the agricultural produce export ratio. The number of dairy cattle in the republic amounts to 1485 heads, as of 1st January 2021. National dairy facilities and milk industry capacities in general are being gradually renovated and subjected to technological improvements, which helps with increasing the output ration of the “extra” class milk. The industry’s needs in highly productive dairy cattle and pedigree livestock for export are well secured on account of 32 cattle breeding farms and 6 genetic selection centers. Dairy industry was given specific targets set out in the five-year program for a 2016–2020 period. During the National Programme implementation with regards to the dairy sector development, the goals set by the programme have been achieved by 90,4%.


2021 ◽  
Vol 9 (12) ◽  
pp. 2504
Author(s):  
Greta Striganavičiūtė ◽  
Jonas Žiauka ◽  
Vaida Sirgedaitė-Šėžienė ◽  
Dorotėja Vaitiekūnaitė

European ash (Fraxinus excelsior) is highly affected by the pathogenic fungus Hymenoscyphus fraxineus in all of Europe. Increases in plant’s secondary metabolite (SM) production is often linked tol enhanced resistance to stress, both biotic and abiotic. Moreover, plant-associated bacteria have been shown to enhance SM production in inoculated plants. Thus, our hypothesis is that bacteria may boost ash SM production, hence priming the tree’s metabolism and facilitating higher levels of resilience to H. fraxineus. We tested three different ash genotypes and used Paenibacillus sp. and Pseudomonas sp. for inoculation in vitro. Total phenol (TPC), total flavonoid (TFC) and carotenoid contents were measured, as well as the chlorophyll a/b ratio and morphometric growth parameters, in a two-stage trial, whereby seedlings were inoculated with the bacteria during the first stage and with H. fraxineus during the second stage. While the tested bacteria did not positively affect the morphometric growth parameters of ash seedlings, they had a statistically significant effect on TPC, TFC, the chlorophyll a/b ratio and carotenoid content in both stages, thus confirming our hypothesis. Specifically, in ash genotype 64, both bacteria elicited an increase in carotenoid content, TPC and TFC during both stages. Additionally, Pseudomonas sp. inoculated seedlings demonstrated an increase in phenolics after infection with the fungus in both genotypes 64 and 87. Our results indicate that next to genetic selection of the most resilient planting material for ash reforestation, plant-associated bacteria could also be used to boost ash SM production.


Sign in / Sign up

Export Citation Format

Share Document